1
|
Ali N, Wang F, Qi L. Open tubular capillary electrochromatography with dual-responsive polymer as coating for separation of chromones. J Chromatogr A 2024; 1714:464595. [PMID: 38141483 DOI: 10.1016/j.chroma.2023.464595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Fabricating polymeric coatings that are responsive to multiple/dual stimuli is crucial and remains a major challenge in the development of highly efficient open tubular capillary electrochromatography (OT-CEC). In this study, a pH and temperature-responsive block copolymer, poly(styrene-maleic anhydride 2-dimethylamino ethyl methacrylate), P(St-MAn-DMAEMA), was designed and synthesized. Using P(St-MAn-DMAEMA) as the coating, an OT-CEC protocol was constructed for the analysis of chromones. The morphology and hydrophobicity-hydrophilicity of the polymeric coating could change via varying the environmental conditions, affecting the separation efficiency of OT-CEC. Interestingly, the best performance of OT-CEC was achieved at pH 9.7 and 45 °C via tuning the interactions between the coating and the analytes. Additionally, the proposed OT-CEC method exhibited a good linear range for the detection of the three test chromones from 10.0 to 100.0 μM, with all correlation coefficients (R2) >0.997. The coatings also had good stability and reusability. This work provides an approach for the preparation of new multiple-stimuli-responsive polymeric coatings for the establishment of OT-CEC systems.
Collapse
Affiliation(s)
- Nasir Ali
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China.
| |
Collapse
|
2
|
Ahmed MA, Yu RB, Quirino JP. Recent developments in open tubular liquid chromatography and electrochromatography from 2019–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Adel Ahmed M, Quirino JP. pH-assisted in-line pseudophase microextraction and separation with tridodecylmethylammonium chloride admicelles in open-tubular capillary-based separations. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
He N, Li Z, Hu C, Chen Z. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal 2022; 12:610-616. [PMID: 36105161 PMCID: PMC9463497 DOI: 10.1016/j.jpha.2022.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Covalent organic frameworks (COFs) are a novel type of crystalline porous organic polymer materials recently developed. It has several advantages in chromatographic separation field, such as high thermal stability, porosity, structural regularity, and large specific surface area. Here, a novel spherical COF 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) was developed as an electrochromatographic stationary phase for capillary electrochromatography separation. The COF TAPB-BPTA modified capillary column was fabricated via a facile in situ growth method at room temperature. The characterization results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) confirmed that COF TAPB-BPTA were successfully modified onto the capillary inner surface. The electrochromatography separation performance of the COF TAPB-BPTA modified capillary was investigated. The prepared column demonstrated outstanding separation performance toward alkylbenzenes, phenols, and chlorobenzenes compounds. Furthermore, the baseline separations of non-steroidal anti-inflammatory drugs (NSAIDs) and parabens with good efficiency and high resolution were achieved. Also, the prepared column possessed satisfactory precision of the intra-day runs (n = 5), inter-day runs (n = 3), and parallel columns (n = 3), and the relative standard deviations (RSDs) of the retention times of tested alkylbenzenes were all less than 2.58%. Thus, this new COF-based stationary phase shows tremendous application potential in chromatographic separation field. COF TAPB–BPTA was studied as OT-CEC stationary phase. In situ, room-temperature growth method was quite facile and efficient. Excellent separation performances toward various hydrophobic compounds. The maximum column efficiency was 1.78 × 105 plates/m. Reproducibility and stability were found to be satisfactory.
Collapse
|
5
|
Qi L, Qiao J. Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. J Chromatogr A 2022; 1670:462957. [DOI: 10.1016/j.chroma.2022.462957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
6
|
Zhou W, Yu X, Liu Y, Sun W, Chen Z. Porous layer open-tubular column with styrene and itaconic acid-copolymerized polymer as stationary phase for capillary electrochromatography-mass spectrometry. Electrophoresis 2021; 42:2664-2671. [PMID: 34499755 DOI: 10.1002/elps.202100148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Enhancing the specific surface area of stationary phase is important in chromatographic science, especially in open-tubular column in which the coating only exists on the inner surface. In this work, a porous layer open-tubular (PLOT) column with stationary phase of styrene and itaconic acid-copolymerized polymer was developed. Thermal-initiated polymerization method with strategies like controlling the ratio of reaction reagents to solvents and reaction time, confinement by the narrow inner diameter of capillary were used for preparing the stationary phase with uniform structure and relatively thick layer. Due to the high separation efficiency and capacity, the PLOT column was used for capillary electrochromatography (CEC) separation of multiple groups of analytes like alkylbenzenes, phenyl amines, phenols, vanillins, and sulfonamides with theoretical plates (N) up to 1,54,845 N/m. In addition, due to high permeability of the CEC column and large electroosmotic flow mobility generated by abundant carboxyl groups in the coating material, the PLOT-CEC column was successfully coupled with mass spectrometry (MS) through a sheath flow interface. The developed PLOT-CEC-MS method was used for the analysis of antiseptics like parabens and herbicides like pyridines.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinhong Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yikun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Wenqi Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
7
|
Burmistrova NA, Pidenko PS, Presnyakov KY, Drozd DD, Skibina YS, Pidenko SA, Goryacheva IY. Multicapillary Systems in Analytical Chemistry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
9
|
Lu N, Kutter JP. Recent advances in microchip enantioseparation and analysis. Electrophoresis 2020; 41:2122-2135. [PMID: 32949465 DOI: 10.1002/elps.202000242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.
Collapse
Affiliation(s)
- Nan Lu
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Fan S, Guan J, Yan F, Zhang D, Shi S, Wang S. Preparation of open‐tubular CEC column bonded with 6‐O‐monotosyl‐deoxy‐β‐cyclodextrin and its application in the enantioseparation of several related benzimidazoles. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shitong Fan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Jin Guan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Feng Yan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Dongxiang Zhang
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Shuang Shi
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Silin Wang
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| |
Collapse
|
11
|
Fang L, Zhao Y, Wang C, Wang C, Han X, Chen P, Zhao L, Wang J, Li S, Jiang Z. Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations. J Sep Sci 2020; 43:2209-2216. [PMID: 32160391 DOI: 10.1002/jssc.201901323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022]
Abstract
Inspired by the distinct chemical and physical properties of nanoparticles, here a novel open-tubular capillary electrochromatography column was prepared by electrostatic assembly of poly(diallydimethylammonium chloride) onto the inner surface of a fused-silica capillary, followed by self-adsorption of negatively charged SH-β-cyclodextrin/gold nanoparticles. The formation of the SH-β-cyclodextrin/gold nanoparticles coated capillary was confirmed and characterized by scanning electron microscopy and energy dispersive spectrometry. The results of scanning electron microscopy and energy dispersive spectrometry studies indicated that SH-β-cyclodextrin/gold nanoparticles were successfully coated on the inner wall of the capillary column. The performance of the SH-β-cyclodextrin/gold nanoparticles coated capillary was validated by the analysis of six pairs of chiral drugs, namely zopiclone, carvedilol, salbutamol, terbutaline sulfate, phenoxybenzamine hydrochloride, and ibuprofen. Satisfactory enantioseparation results were achieved, confirming the use of gold nanoparticles as the support could enhance the phase ratio of the open-tubular capillary column. Additionally, the stability and reproducibility of the SH-β-cyclodextrin/gold nanoparticles coated capillary column were also investigated. Then, this proposed method was well validated with good linearity (≥0.999), recovery (90.0-93.5%) and repeatability, and was successfully used for enantioseparation of ibuprofen in spiked plasma samples, which indicated the new column's potential usage in biological analysis.
Collapse
Affiliation(s)
- Linlin Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.,College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Yanyan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Changyuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xu Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Pengjun Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lizhu Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, P. R. China
| | - Jingping Wang
- College of Pharmacy, Harbin University of Commerce, Harbin, P. R. China
| | - Shuang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhen Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
12
|
Zhou W, Sun W, Liu Y, Mao Z, Chen Z. Ionic liquid-copolymerized monolith based porous layer open tubular column for CEC-MS analysis. Talanta 2020; 209:120556. [DOI: 10.1016/j.talanta.2019.120556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 11/09/2019] [Indexed: 01/07/2023]
|
13
|
Hajba L, Guttman A. Recent Advances in Capillary Electrochromatography of Proteins and Carbohydrates in the Biopharmaceutical and Biomedical Field. Crit Rev Anal Chem 2020; 51:289-298. [PMID: 32022586 DOI: 10.1080/10408347.2020.1720589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Capillary electrochromatography (CEC) is a powerful hybrid separation technique that combines capillary electrophoresis and capillary chromatography, capable to address the analytical challenges of proteomics and glycomics. The focus of this paper is to review the recent developments in capillary electrochromatography of proteins and carbohydrates. The different column types applied in capillary electrochromatography such as packed bed, open tubular and monoliths are conferred in detail with respective separation examples. A comprehensive comparison is also given listing the mostly utilized coating methods, stationary phase materials and column preparation methods. The choice of porogenic solvent combinations for monolithic column fabrication is thoroughly discussed, paying close attention to the fine tuning options for the separation driving electroosmotic flow. Application examples of CEC in process analytical technology for the biopharmaceutical and biomarker discovery in the biomedical fields are also given.
Collapse
Affiliation(s)
- L Hajba
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - A Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary.,Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Determination of Trace Sulfonamides in Environmental Water and Milk Through Capillary Electrochromatography Using PEG-MoS2 as Stationary Phase. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Sun G, Kim YS, Kim JS, Ali F, An HJ, Cheong WJ. 100 Micrometer bore open tubular capillary column modified with linear co-polymer chains for application in low pressure liquid chromatography. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1667821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Genlin Sun
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Yune Sung Kim
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Jeong Soo Kim
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| | - Faiz Ali
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Won Jo Cheong
- Department of Chemistry, Inha University, Michuhol-gu, Incheon, South Korea
| |
Collapse
|
16
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
17
|
Mao Z, Chen Z. Advances in capillary electro-chromatography. J Pharm Anal 2019; 9:227-237. [PMID: 31452960 PMCID: PMC6702421 DOI: 10.1016/j.jpha.2019.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Capillary electrochromatography (CEC) is a micro-scale separation technique which is a hybrid between capillary electrophoresis (CE) and liquid chromatography (LC). CEC can be performed in packed, monolithic and open-tubular columns. In recent three years (from 2016 to 2018), enormous attention for CEC has been the development of novel stationary phases. This review mainly covers the development of novel stationary phases for open-tubular and monolithic columns. In particular, some biomaterials attracted increasing interest. There are no significant breakthroughs in technology and principles in CEC. The typical CEC applications, especially chiral separations are described.
Collapse
Affiliation(s)
- Zhenkun Mao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| |
Collapse
|
18
|
Chiral Selectors in Capillary Electrophoresis: Trends During 2017⁻2018. Molecules 2019; 24:molecules24061135. [PMID: 30901973 PMCID: PMC6471358 DOI: 10.3390/molecules24061135] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates.
Collapse
|
19
|
Tarongoy F, Haddad PR, Quirino JP. Admicelles in open-tube capillaries for chromatography and electrochromatography. Anal Chim Acta 2019; 1067:147-154. [PMID: 31047146 DOI: 10.1016/j.aca.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
Abstract
Surfactant bilayers or admicelles at the solid surface-liquid interface inside 50-200 μm inner diameter (i.d.) open-tube fused-silica capillaries were developed as 'soft' stationary pseudophases for the liquid chromatographic (LC) separations of neutral and charged analytes. Admicelles were formed in-situ from buffered aqueous mobile phases with cetytrimethylammonium bromide at concentrations between the critical surface aggregation concentration and critical micelle concentration, which were determined by electroosmotic flow measurements using capillary electrophoresis. There were no micelles in the mobile phase solution. Also, there was no solid phase that is classically required in LC. Pressure and voltage driven modes or open-tubular admicellar liquid chromatography (OT-AMLC) and electrochromatography, respectively were proposed based on the separation of neutral analytes. The parameters (i.e., pH, concentration of surfactant, salt, and methanol in the mobile phase and capillary i.d.) that affected the surprising chromatographic effect of admicelles at the interface were investigated. The analytical performance of OT-AMLC for small molecules were found acceptable. Applications to environmental water and biological (HepG cell line metabolism media) samples analysis with appropriate sample preparation procedures were also conducted. The use of pseudophases at the solid surface-liquid interface could be a viable solution to problems associated with the use of solid stationary or support materials in nano- and micro-liquid chromatography and electrochromatography.
Collapse
Affiliation(s)
- Faustino Tarongoy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul Raymond Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
20
|
Sun X, Guo J, Yu T, Du Y, Feng Z, Zhao S, Huang Z, Liu J. A novel coating method for CE capillary using carboxymethyl-β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation. Anal Bioanal Chem 2019; 411:1193-1202. [PMID: 30707270 DOI: 10.1007/s00216-018-1545-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022]
Abstract
Magnetic microparticles (MMPs) have been extensively studied and aroused considerable interest in separation science owing to their superior characteristics. In this paper, a novel coated capillary with carboxymethyl-β-cyclodextrin-functionalized magnetic microparticles (CD-MMPs) as stationary phase was constructed and then applied to establish an open-tubular capillary electrochromatography enantioseparation system. The preparation of the CD-MMP-coated open-tubular column was very convenient because the coating of the magnetic microparticles onto the capillary column could be easily manipulated by an external magnetic field. The preparation conditions of the coated capillary such as magnetic field intensity and coating time are discussed in detail. The new constructed CD-MMP capillary system was applied to separate enantiomers of several racemic drugs. Compared to the uncoated capillary system, obviously preferable separations of tested enantiomers were obtained. Several important parameters affecting the enantioseparation, such as CM-β-CD concentration, running buffer pH, organic solvent, and applied voltage, were systematically optimized. Furthermore, satisfactory repeatability and chemical stability of this new CD-MMP capillary system were achieved in the experiment. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Jie Guo
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Tao Yu
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Yingxiang Du
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, Jiangsu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Zijie Feng
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Shiyuan Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Zhifeng Huang
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| | - Jie Liu
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
21
|
Hirano K, Takano S, Tsukuda T. Asymmetric aerobic oxidation of secondary alcohols catalyzed by poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters modified with cyclodextrin derivatives. Chem Commun (Camb) 2019; 55:15033-15036. [DOI: 10.1039/c9cc06770a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modification of poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters (1.8 ± 0.6 nm) with aminated cyclodextrins induced aerobic oxidative kinetic resolution of racemic secondary alcohols (krel = 1.2).
Collapse
Affiliation(s)
- Koto Hirano
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shinjiro Takano
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tatsuya Tsukuda
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
22
|
Lam SC, Sanz Rodriguez E, Haddad PR, Paull B. Recent advances in open tubular capillary liquid chromatography. Analyst 2019; 144:3464-3482. [DOI: 10.1039/c9an00329k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers advances and applications of open tubular capillary liquid chromatography (OT-LC) over the period 2007–2018.
Collapse
Affiliation(s)
- Shing Chung Lam
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Estrella Sanz Rodriguez
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Paul R. Haddad
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Brett Paull
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| |
Collapse
|
23
|
Boysen RI. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J Sep Sci 2018; 42:51-71. [PMID: 30411488 DOI: 10.1002/jssc.201800945] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
This review documents recent advances in the design, synthesis, characterization, and application of molecularly imprinted polymers in the form of monoliths and particles/beads for the use in the separation and analysis of proteins with solid-phase extraction or liquid chromatography. The merits of three-dimensional molecular imprinting, whereby the molecular template is randomly embedded in the polymer, and two-dimensional imprinting, in which the template is confined to the surface, are described. Target protein binding can be achieved by either using the entire protein as a template or by using a protein substructure as template, that is, a peptide, as in the "epitope" approach. The intended approach and strategy then determine the choice of polymerization method. A synopsis has been provided on methods used for the physical, chemical, and functional characterizations and associated performance evaluations of molecularly imprinted and nonimprinted control polymers, involving a diverse range of analytical techniques commonly used for low and high molecular mass analytes. Examples of recent applications demonstrate that, due to the versatility of imprinting methods, molecularly imprinted monoliths or particles/beads can be adapted to protein extraction/depletion and separation procedures relevant to, for example, protein biomarker detection and quantification in biomedical diagnostics and targeted proteomics.
Collapse
|
24
|
Kong D, Chen Z. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis 2018; 39:2912-2918. [PMID: 30194854 DOI: 10.1002/elps.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Abstract
Because of unique properties like permanent porosity, low density and large surface area, covalent organic frameworks are attractive microporous materials as stationary phase for CEC. Among them, COF-TpPa-1 possesses extraordinary chemical stability and common features of covalent organic frameworks. So, COF-TpPa-1 could be a promising material as stationary phase to enhance separation selectivity and tolerate the acid or alkaline electrochromatographic separation conditions. Here, we report the preparation of COF-TpPa-1 modified capillary column by in situ growth for electrochromatographic separation. The immobilization of COF-TpPa-1 on the inner wall of capillary column was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The fabricated COF-TpPa-1 modified capillary column indicated good resolution for the separation of neutral analytes, nonsteroidal anti-inflammatory drugs and food additives in open-tubular CEC mode. Compared with bare capillary column, the COF-TpPa-1 modified capillary column improved separation selectivity remarkably for tested analytes, including hydrophobic, π-π and hydrogen bond interactions. Besides, the prepared capillary column showed excellent repeatability and stability. The intraday, interday and column-to-column relative standard deviations of migration time for neutral analytes were less than 3.54%. This work shows enamine-linked covalent organic frameworks have great potential as stationary phases in CEC.
Collapse
Affiliation(s)
- Deying Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| |
Collapse
|
25
|
Aydoğan C. Chiral separation and determination of amino acid enantiomers in fruit juice by open-tubular nano liquid chromatography. Chirality 2018; 30:1144-1149. [DOI: 10.1002/chir.23006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Cemil Aydoğan
- Department of Food Engineering; Bingöl University; Bingöl Turkey
| |
Collapse
|
26
|
Liu X, Sun S, Nie R, Ma J, Qu Q, Yang L. Highly uniform porous silica layer open-tubular capillary columns produced via in-situ biphasic sol–Gel processing for open-tubular capillary electrochromatography. J Chromatogr A 2018; 1538:86-93. [DOI: 10.1016/j.chroma.2018.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/23/2022]
|
27
|
Xu YY, Lv WJ, Ren CL, Niu XY, Chen HL, Chen XG. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. J Chromatogr A 2018; 1532:223-231. [DOI: 10.1016/j.chroma.2017.11.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
|
28
|
Quirino JP. A cationic β‐cyclodextrin as a dynamic coating for the separation of proteins in capillary electrophoresis. J Sep Sci 2017; 40:4835-4838. [DOI: 10.1002/jssc.201700610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences—Chemistry University of Tasmania Sandy Bay Tasmania Australia
| |
Collapse
|
29
|
Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 2017; 1530:1-18. [DOI: 10.1016/j.chroma.2017.10.065] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022]
|
30
|
Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2017; 39:136-159. [PMID: 28975648 DOI: 10.1002/elps.201700321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.
Collapse
Affiliation(s)
| | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Madrid, Spain
| | | |
Collapse
|
31
|
Kong D, Chen Z. Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase. Electrophoresis 2017; 39:363-369. [DOI: 10.1002/elps.201700320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/26/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Deying Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; and Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Beijing P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; and Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
32
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
34
|
Tarongoy FM, Haddad PR, Quirino JP. Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis 2017; 39:34-52. [PMID: 28815745 DOI: 10.1002/elps.201700280] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/11/2022]
Abstract
Interest in open-tubular capillary electrochromatography (OT-CEC) continues to thrive because of the inherent advantage of OT-CEC combining the high efficiency of capillary electrophoresis and the high selectivity of high performance liquid chromatography. For the period 2016 to 2017, novel materials have been developed as first-time stationary phases for OT-CEC and are grouped in this review as polymer-based materials, frameworks, nanoparticles, graphene-based materials, and biomaterials. Coating and fabrication methods mostly rely on covalent coating strategies while non-covalent immobilisation strategies like electrostatic assembly are notably still being employed. The concern of overcoming phase ratio challenges in OT-CEC coatings have also generated adoption of combined coating strategies including multi-layering, layer-by-layer self-assembly and methods adapted from nanofilm fabrications like epitaxial growth, liquid phase deposition, or nucleation of crystal growth. The emergence of non-conventional coating characterisation methods such as transmission electron microscopy, X-ray diffraction or X-ray photoelectron spectroscopy is also discussed.
Collapse
Affiliation(s)
- Faustino M Tarongoy
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia.,Chemistry Department, College of Arts and Sciences, Xavier University-Ateneo de Cagayan, Cagayan de Oro, Misamis Oriental, Philippines
| | - Paul R Haddad
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
35
|
González-Curbelo MÁ, Varela-Martínez DA, Socas-Rodríguez B, Hernández-Borges J. Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 2017; 38:2431-2446. [DOI: 10.1002/elps.201700178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | - Diana Angélica Varela-Martínez
- Departamento de Ciencias Básicas, Facultad de Ingeniería; Universidad EAN; Bogotá D.C. Colombia
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| |
Collapse
|
36
|
Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Kulsing C, Yang Y, Chowdhury JM, Boysen RI, Hearn MTW. Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open‐tubular capillaries. Electrophoresis 2017; 38:1179-1187. [DOI: 10.1002/elps.201600532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Chadin Kulsing
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Yuanzhong Yang
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Jamil M. Chowdhury
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Reinhard I. Boysen
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| | - Milton T. W. Hearn
- Australian Centre for Research on Separation Science (ACROSS), Australian Research Council Special Research Centre for Green Chemistry School of Chemistry Monash University Melbourne Victoria Australia
| |
Collapse
|
38
|
A capillary coated with a metal-organic framework for the capillary electrochromatographic determination of cephalosporins. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2131-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Kong D, Bao T, Chen Z. In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2095-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
|
41
|
In Situ Measurement of Polymer Layer Thickness in Porous Layer Open Tubular (PLOT) Columns Using Optical Absorbance in the Near-IR Range. SEPARATIONS 2016. [DOI: 10.3390/separations3040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Al-Massaedh “AA, Pyell U. Mixed-mode acrylamide-based continuous beds bearing tert -butyl groups for capillary electrochromatography synthesized via complexation of N - tert -butylacrylamide with a water-soluble cyclodextrin. Part I: Retention properties. J Chromatogr A 2016; 1477:114-126. [DOI: 10.1016/j.chroma.2016.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
43
|
Mikšík I. Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci 2016; 40:251-271. [DOI: 10.1002/jssc.201600908] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
44
|
Zhang Y, Wang W, Ma X, Jia L. Polydopamine assisted fabrication of titanium oxide nanoparticles modified column for proteins separation by capillary electrochromatography. Anal Biochem 2016; 512:103-109. [DOI: 10.1016/j.ab.2016.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
|
45
|
Zhang Y, Wang W, Xiao X, Jia L. Separation of monoclonal antibody charge state variants by open tubular capillary electrochromatography with immobilised protein as stationary phase. J Chromatogr A 2016; 1466:180-8. [DOI: 10.1016/j.chroma.2016.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
|
46
|
Enantioseparations in open-tubular capillary electrochromatography: Recent advances and applications. J Chromatogr A 2016; 1467:145-154. [PMID: 27461922 DOI: 10.1016/j.chroma.2016.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
This review highlights recent advances and applications in open-tubular capillary electrochromatography (OT-CEC) for enantioseparations during the last decade. Although extensive research has been conducted in the area of separations by use of CEC, and a big number of reviews have been published, there is not a review on exclusively the use of chiral stationary phases (CSPs) in OT-CEC for enantioseparations. Therefore, in this review, the design and synthesis of different CSPs are presented, and their potential applications in OT-CEC for enantioseparations are discussed. The different approaches to CSP development include chiral nanomaterials, porous layers, molecular imprinting, sol-gel technique, polyelectrolyte multilayer coating, polymeric coating and others.
Collapse
|
47
|
Bao T, Tang P, Mao Z, Chen Z. An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta 2016; 154:360-6. [DOI: 10.1016/j.talanta.2016.03.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023]
|
48
|
Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013-2015). Electrophoresis 2016; 37:1591-608. [DOI: 10.1002/elps.201600058] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
|
49
|
Chen J, Liang RP, Wu LL, Qiu JD. One-step preparation and application of mussel-inspired poly(norepinephrine)-coated polydimethylsiloxane microchip for separation of chiral compounds. Electrophoresis 2016; 37:1676-84. [PMID: 26970233 DOI: 10.1002/elps.201600054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/11/2023]
Abstract
In this paper, using the self-polymerization of norepinephrine (NE) and its favorable film-forming property, a simple and green preparation approach was developed to modify a PDMS channel for enantioseparation of chiral compounds. After the PDMS microchip was filled with NE solution, poly(norepinephrine) (PNE) film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of NE by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, the PNE-coated PDMS microchip exhibited much better wettability, more stable and suppressed EOF, and less nonspecific adsorption. The water contact angle and EOF of PNE-coated PDMS substrate were measured to be 13° and 1.68 × 10(-4) cm(2) V(-1) s(-1) , compared to those of 108° and 2.24 × 10(-4) cm(2) V(-1) s(-1) from the untreated one, respectively. Different kinds of chiral compounds, such as amino acid enantiomer, drug enantiomer, and peptide enantiomer were efficiently separated utilizing a separation length of 37 mm coupled with in-column amperometric detection on the PNE-coated PDMS microchips. This facile mussel-inspired PNE-based microchip system exhibited strong recognition ability, high-performance, admirable reproducibility, and stability, which may have potential use in the complex biological analysis.
Collapse
Affiliation(s)
- Juan Chen
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Lu-Lu Wu
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
50
|
Sepehrifar R, Boysen RI, Danylec B, Yang Y, Saito K, Hearn MT. Application of pH-responsive poly(2-dimethyl-aminoethylmethacrylate)-block-poly(acrylic acid) coatings for the open-tubular capillary electrochromatographic analysis of acidic and basic compounds. Anal Chim Acta 2016; 917:117-25. [DOI: 10.1016/j.aca.2016.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
|