1
|
Sharma D, Garg A, Kumar M, Rashid F, Khan AU. Down-Regulation of Flagellar, Fimbriae, and Pili Proteins in Carbapenem-Resistant Klebsiella pneumoniae (NDM-4) Clinical Isolates: A Novel Linkage to Drug Resistance. Front Microbiol 2019; 10:2865. [PMID: 31921045 PMCID: PMC6928051 DOI: 10.3389/fmicb.2019.02865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of carbapenem-resistant Klebsiella pneumoniae infections have worsened the current situation worldwide, in which totally drug-resistant strains (bad bugs) are becoming increasingly prominent. Bacterial biofilms enable bacteria to tolerate higher doses of antibiotics and other stresses, which may lead to the drug resistance. In the present study, we performed proteomics on the carbapenem-resistant NDM-4-producing K. pneumoniae clinical isolate under meropenem stress. Liquid chromatography coupled with mass spectrometry (LC-MS/MS) analysis revealed that 69 proteins were down-regulated (≤0.42-fold change) under meropenem exposure. Within the identified down-regulated proteome (69 proteins), we found a group of 13 proteins involved in flagellar, fimbriae, and pili formation and their related functions. Further, systems biology approaches were employed to reveal their networking pathways. We suggest that these down-regulated proteins and their interactive partners cumulatively contribute to the emergence of a biofilm-like state and the survival of bacteria under drug pressure, which could reveal novel mechanisms or pathways involved in drug resistance. These down-regulated proteins and their pathways might be used as targets for the development of novel therapeutics against antimicrobial-resistant (AMR) infections.
Collapse
Affiliation(s)
- Divakar Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, New Delhi, India
| | | | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan K, Shukla S, Bisht D. Role of M.tuberculosis protein Rv2005c in the aminoglycosides resistance. Microb Pathog 2019; 132:150-155. [PMID: 31059757 DOI: 10.1016/j.micpath.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Tuberculosis is an airborne infectious disease caused by Mycobacterium tuberculosis which threatens the globe. Aminoglycosides {Amikacin (AK) & Kanamycin (KM)} are WHO recommended second-line anti-TB drugs used against the treatment of drug-resistant tuberculosis. Aminoglycosides target the steps of protein translation machinery of M.tuberculosis. Several mechanisms have been put forward to elucidate the phenomena of aminoglycosides resistance but our knowledge is still insufficient. The aim of the study was to understand the involvement of Mycobacterium tuberculosis universal stress protein (Rv2005c) in aminoglycosides resistance and virulence. To establish the relationship of universal stress protein Rv2005c with AK & KM resistance, Rv2005c was cloned, expressed in E.coli BL21 using pQE2 expression vector and antimicrobial drug susceptibility testing (DST) was carried out. STRING-10 was also used to predict the interacting protein partners of Rv2005c. DST showed that the minimum inhibitory concentration of induced recombinant cells (Rv2005c) were five and four folds shifted with AK and KM E-strips, respectively. STRING-10 showed the interacting protein partners of Rv2005c. Overexpression of Rv2005c leads to shifting in MIC which might be signifying its involvement in the survival/resistance of Mycobacteria by inhibiting/modulating the effects of AK and KM released from the E-strips. Interactome also suggests that Rv2005c and its interacting protein partners are cumulatively involved in M.tuberculosis resistance, stresses, and latency.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India.
| | - Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Mohammad Faheem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Sangeeta Shukla
- School of Studies (SOS) Zoology, Jiwaji University, Gwalior, 474011, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India.
| |
Collapse
|
3
|
Qayyum S, Sharma D, Bisht D, Khan AU. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb Pathog 2019; 126:205-211. [PMID: 30423345 DOI: 10.1016/j.micpath.2018.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Enterococcus faecalis is a gram positive enteric commensal bacteria or opportunistic pathogen and its infection involves biofilm formation. Quercetin, a plant origin polyphenol was found to inhibit E. faecalis biofilm. Crystal violet assay, SEM and CLSM microscopy confirmed biofilm inhibition by quercetin. Proteomics was used to elucidate the changes occurred in bacterial cell by quercetin treatment. 2D-Electrophorosis and MALDI-TOF analysis revealed that nineteen proteins were differentially expressed in quercetin treated sample. Glycolytic pathways, protein translation-elongation pathways and protein folding pathways were under differential expression after treatment. Real Time-PCR (RT-PCR) validated the proteomic data at genomic level except for the translation elongation factor G which showed opposite data to proteomics. Protein-protein interaction networks constructed using STRING 10.0 demonstrated strong connection of translation-elongation proteins with many important proteins. The results of the comparative analysis indicate that quercetin exerts its inhibitory effect by disturbing glycolytic, protein translation-elongation and protein folding pathways. This disturbs bacterial physiology and stops transition of planktonic cells to biofilm state.
Collapse
Affiliation(s)
- Shariq Qayyum
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India; Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Sharma D, Singh R, Deo N, Bisht D. Interactome analysis of Rv0148 to predict potential targets and their pathways linked to aminoglycosides drug resistance: An insilico approach. Microb Pathog 2018; 121:179-183. [PMID: 29800702 DOI: 10.1016/j.micpath.2018.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
Failure of multi drug resistant tuberculosis (MDR-TB) treatment has increased the risk of aminoglycosides resistance, disease transmission, morbidity and mortality. Aminoglycosides are commonly used in multi drug resistant tuberculosis (MDR-TB) treatment. They inhibit protein synthesis by interacting with translationary steps. Apart from gene mutations various mechanisms of aminoglycosides resistance have been reported but still our knowledge regarding aminoglycosides resistance is fragmentary. Proteomics and bioinformatics approaches are the most accepted approaches to explore the unrevealed mechanisms of aminoglycosides resistance. Our previous studies suggested that over expression of Rv0148 in aminoglycosides resistant M. tuberculosis clinical isolates potentially leads to aminoglycosides resistance. In this study we have analyzed the protein-protein interactions of putative short-chain type dehydrogenase/reductase (Rv0148) and predicted the proteins target linked to the aminoglycosides drug resistance. Interactome predicted that fatty acid synthase (fas), dehydrogenase (htdY), dehydrogenase (MT3642), quinine oxidoreductase (MT0157), phenyloxazoline synthase (mbtB), hypothetical protein (Rv0130), 3-oxoacyl-ACP synthase (kasA), 3-oxoacyl-ACP synthase (kasB) aldehyde dehydrogenase (MT0155) and hypothetical protein (Rv1867) were the interactive partners of Rv0148. We have suggested that Rv0148, its predictive interactive protein partners and their pathways (via lipid metabolism as well as intermediary metabolism and respiration) cumulatively unlock the mystery of aminoglycosides resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, 202002, India.
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| |
Collapse
|
5
|
Agarwal S, Ghosh S, Sharma S, Kaur K, Verma I. Mycobacterium tuberculosis H37Rv expresses differential proteome during intracellular survival within alveolar epithelial cells compared with macrophages. Pathog Dis 2018; 76:5052203. [DOI: 10.1093/femspd/fty058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- S Agarwal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - K Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - I Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Sharma D, Bisht D, Khan AU. Potential Alternative Strategy against Drug Resistant Tuberculosis: A Proteomics Prospect. Proteomes 2018; 6:26. [PMID: 29843395 PMCID: PMC6027512 DOI: 10.3390/proteomes6020026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest human pathogen of the tuberculosis diseases. Drug resistance leads to emergence of multidrug-resistant and extremely drug resistant strains of M. tuberculosis. Apart from principal targets of resistance, many explanations have been proposed for drug resistance but some resistance mechanisms are still unknown. Recently approved line probe assay (LPA) diagnostics for detecting the resistance to first and second line drugs are unable to diagnose the drug resistance in M. tuberculosis isolates which do not have the mutations in particular genes responsible for resistance. Proteomics and bioinformatic tools emerged as direct approaches for identification and characterization of novel proteins which are directly and indirectly involved in drug resistance that could be used as potential targets in future. In future, these novel targets might reveal new mechanism of resistance and can be used in diagnostics or as drug targets.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
7
|
Venkatesan A, Palaniyandi K, Sharma D, Bisht D, Narayanan S. Characterization of FtsY, its interaction with Ffh, and proteomic identification of their potential substrates in Mycobacterium tuberculosis. Can J Microbiol 2018; 64:243-251. [PMID: 29361248 DOI: 10.1139/cjm-2017-0385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The universally conserved signal recognition particle (SRP) pathway that mediates co-translational targeting of membrane and secretory proteins is essential for eukaryotic and prokaryotic cells. The Mycobacterium tuberculosis SRP pathway consists of 2 proteins, Ffh and FtsY, and a 4.5S RNA molecule. Although the Escherichia coli SRP pathway is well studied, understanding of the M. tuberculosis SRP pathway components is very limited. In this study, we have overexpressed and characterized the M. tuberculosis SRP receptor (SR) FtsY as a GTP binding protein. Further, we established the direct protein-protein interaction between Ffh and FtsY. The Ffh-FtsY complex formation resulted in mutual stimulation of their GTP hydrolysis activity. We also attempted to biochemically characterize the SRP components by constructing the antisense gene knockdown strains of ffh and ftsY in M. tuberculosis. Loss of ffh and ftsY resulted in a decreased in vitro growth rate of the antisense ffh strain as compared with the antisense ftsY strain. Finally, 2-D gel electrophoresis of antisense depleted ffh and ftsY strains identified differential expression of 14 proteins.
Collapse
Affiliation(s)
- Arunkumar Venkatesan
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Kannan Palaniyandi
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| | - Divakar Sharma
- b Department of Biochemistry, National JALMA Institute for Leprosy & other Mycobacterial Diseases, Dr. Matsuki Miyazaki Road, Tajganj, Agra 282004, India
| | - Deepa Bisht
- b Department of Biochemistry, National JALMA Institute for Leprosy & other Mycobacterial Diseases, Dr. Matsuki Miyazaki Road, Tajganj, Agra 282004, India
| | - Sujatha Narayanan
- a Department of Immunology, National Institute for Research in Tuberculosis, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600031, India
| |
Collapse
|
8
|
Zhang D, Lan D, Pang X, Cui B, Bai L, Liu H, Yan H. Separation of proteins from complex bio-matrix samples using a double-functionalized polymer monolithic column. Analyst 2017; 143:280-288. [PMID: 29184931 DOI: 10.1039/c7an01491k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A double-functionalized polymer monolithic column was fabricated within the confines of a stainless-steel column (50 mm × 4.6 mm i.d.) via a facile method using iron porphyrin, ionic liquid (1-allyl-3-methylimidazolium chloride) and 1,10-decanediol dimethacrylate as tri-monomers; ethylene dimethacrylate as a crosslinker; polyethylene glycol 400 and N,N-dimethylformamide as co-porogens; benzoyl peroxide and N,N-dimethyl aniline as the redox initiation system. Results obtained from scanning electron microscopy, nitrogen adsorption-desorption, and mercury intrusion porosimetry confirmed the uniform pore structure and the pore size distribution of macro-pores. The home-made monolith was further characterized by elemental analysis to investigate the elemental composition of Fe supplied by iron porphyrin, confirming the synthetic process. The resulting optimized monolithic column was used as the stationary phase in high performance liquid chromatography for separating proteins, such as mixture of standard proteins, egg white, and human plasma, exhibiting good selectivity and high performance. It is worth noting that the home-made double-functionalized polymer monolithic column shows excellent selectivity for fractionation separation of human plasma proteins, and it is a promising separation tool for complex bio-samples in proteomic research.
Collapse
Affiliation(s)
- Doudou Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Sharma D, Dhuriya YK, Deo N, Bisht D. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis. Front Microbiol 2017; 8:2452. [PMID: 29321768 PMCID: PMC5732208 DOI: 10.3389/fmicb.2017.02452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and totally drug resistant tuberculosis (TDR-TB) has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yogesh K. Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
10
|
Sharma D, Bisht D. Secretory Proteome Analysis of Streptomycin-Resistant Mycobacterium tuberculosis Clinical Isolates. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1229-1238. [PMID: 28314116 DOI: 10.1177/2472555217698428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tuberculosis still remains one of the most fatal infectious diseases. Streptomycin (SM) is the drug of choice, especially for patients with multidrug-resistant tuberculosis or category II patients, because it targets the protein synthesis machinery by interacting with steps of translation. Several mechanisms have been proposed to explain the resistance, but our knowledge is inadequate. Secretome often plays an important role in pathogenesis and is considered an attractive reservoir for the development of novel diagnostic markers and targets. In this study, we analyze the secretory proteins of streptomycin-resistant Mycobacterium tuberculosis isolates by 2-dimensional gel electrophoresis-matrix assisted laser desorption/ionization-time-of-flight mass spectrometry and bioinformatic tools. Fifteen overexpressed proteins were identified in a resistant isolate that belonged to various categories such as virulence/detoxification/adaptation, intermediary metabolism and respiration, and conserved hypotheticals. Among them, Rv1860, Rv1980c, Rv2140c, Rv1636, and Rv1926c were proteins of an undefined role. Molecular docking of these proteins with SM showed that it binds to their conserved domains and suggests that these might neutralize/compensate the effect of the drug. The interactome also suggests that overexpressed proteins along with their interactive partner might be involved in M. tuberculosis virulence and resistance. The cumulative effect of these overexpressed proteins could involve SM resistance, and these might be used as diagnostic markers or potential drug targets.
Collapse
Affiliation(s)
- Divakar Sharma
- 1 Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Deepa Bisht
- 1 Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| |
Collapse
|
11
|
Kumar G, Shankar H, Sharma D, Sharma P, Bisht D, Katoch VM, Joshi B. Proteomics of Culture Filtrate of Prevalent Mycobacterium tuberculosis Strains: 2D-PAGE Map and MALDI-TOF/MS Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1142-1149. [PMID: 28683213 DOI: 10.1177/2472555217717639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although diverse efforts have been done to identify biomarkers for control of tuberculosis using laboratory strain Mycobacterium tuberculosis H37Rv, the disease still poses a threat to mankind. There are many emerging M. tuberculosis strains, and proteomic profiling of these strains might be important to find out potential targets for diagnosis and/or prevention of tuberculosis. We evaluated the comparative proteomic profiling of culture filtrate (CF) proteins from prevalent M. tuberculosis strains (Central Asian or Delhi type; CAS1_Del, East African-Indian; EAI-3 and Beijing family) by 2D polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. As a result, we could identify 12 CF proteins (Rv0066c, Rv1310, Rv3375, Rv1415, Rv0567, Rv1886c, Rv3803c, Rv3804c, Rv2031c, Rv1038c, Rv2809, and Rv1911c), which were consistently increased in all prevalent M. tuberculosis strains, and interestingly, two CF proteins (Rv2809, Rv1911c) were identified with unknown functions. Consistent increased intensity of these proteins suggests their critical role for survival of prevalent M. tuberculosis isolates, and some of these proteins may also have potential as diagnostic and vaccine candidates for tuberculosis, which needs to be further explored by immunological analysis.
Collapse
Affiliation(s)
- Gavish Kumar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Sri Aurobindo Marg, New Delhi, India
| | - Hari Shankar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Vishwa M Katoch
- Department of Health Research (Ministry of Health and Family Welfare), Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| |
Collapse
|
12
|
Manikandan M, Deenadayalan A, Vimala A, Gopal J, Chun S. Clinical MALDI mass spectrometry for tuberculosis diagnostics: Speculating the methodological blueprint and contemplating the obligation to improvise. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Sharma D, Bisht D. Role of Bacterioferritin & Ferritin in M. tuberculosis Pathogenesis and Drug Resistance: A Future Perspective by Interactomic Approach. Front Cell Infect Microbiol 2017; 7:240. [PMID: 28642844 PMCID: PMC5462900 DOI: 10.3389/fcimb.2017.00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, one of the most successful and deadliest human pathogen. Aminoglycosides resistance leads to emergence of extremely drug resistant strains of M. tuberculosis. Iron is crucial for the biological functions of the cells. Iron assimilation, storage and their utilization is not only involved in pathogenesis but also in emergence of drug resistance strains. We previously reported that iron storing proteins (bacterioferritin and ferritin) were found to be overexpressed in aminoglycosides resistant isolates. In this study we performed the STRING analysis of bacterioferritin & ferritin proteins and predicted their interactive partners [ferrochelatase (hemH), Rv1877 (hypothetical protein/probable conserved integral membrane protein), uroporphyrinogen decarboxylase (hemE) trigger factor (tig), transcriptional regulatory protein (MT3948), hypothetical protein (MT1928), glnA3 (glutamine synthetase), molecular chaperone GroEL (groEL1 & hsp65), and hypothetical protein (MT3947)]. We suggested that interactive partners of bacterioferritin and ferritin are directly or indirectly involved in M. tuberculosis growth, homeostasis, iron assimilation, virulence, resistance, and stresses.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial DiseasesAgra, India
| | | |
Collapse
|
14
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
15
|
Sharma D, Bisht D. M. tuberculosis Hypothetical Proteins and Proteins of Unknown Function: Hope for Exploring Novel Resistance Mechanisms as well as Future Target of Drug Resistance. Front Microbiol 2017; 8:465. [PMID: 28377758 PMCID: PMC5359272 DOI: 10.3389/fmicb.2017.00465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/07/2017] [Indexed: 01/22/2023] Open
Abstract
Drug resistance in tuberculosis predominantly, mono-resistance, multi drug resistance, extensively drug resistance and totally drug resistance have emerged as a major problem in the chemotherapy of tuberculosis. Failures of first and second line anti-tuberculosis drugs treatment leads to emergence of resistant Mycobacterium tuberculosis. Few genes are reported as the principal targets of the resistance and apart from the primary targets many explanations have been proposed for drug resistance but still some resistance mechanisms are unknown. As proteins involved in most of the biological processes, these are potentially explored the unknown mechanism of drug resistance and attractive targets for diagnostics/future therapeutics against drug resistance. In last decade a panel of studies on expression proteomics of drug resistant M. tuberculosis isolates reported the differential expression of uncharacterized proteins and suggested these might be involved in resistance. Here we emphasize that detailed bioinformatics analysis (like molecular docking, pupylation, and proteins-proteins interaction) of these uncharacterized and hypothetical proteins might predict their interactive partners (other proteins) which are involved in various pathways of M. tuberculosis system biology and might give a clue for novel mechanism of drug resistance or future drug targets. In future these uncharacterized targets might be open the new resistance mechanism and used as potential drug targets against drug resistant tuberculosis.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases,Agra, India
| | | |
Collapse
|
16
|
Khan A, Sharma D, Faheem M, Bisht D, Khan AU. Proteomic analysis of a carbapenem-resistant Klebsiella pneumoniae strain in response to meropenem stress. J Glob Antimicrob Resist 2017; 8:172-178. [PMID: 28219823 DOI: 10.1016/j.jgar.2016.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Antibiotic resistance has become a major problem in treating bacterial infections. The aim of this study was to elucidate the effects of meropenem on a blaKPC-2-harbouring multidrug-resistant clinical strain of Klebsiella pneumoniae through a proteomics approach in order to attain a deeper understanding of bacterial resistance strategies. METHODS Analysis was performed by two-dimensional gel electrophoresis of whole-cell extracts of bacteria exposed to a sublethal concentration of meropenem compared with the untreated control. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF). RESULTS Based on Quantity One® software and MALDI-TOF analysis, 16 overexpressed proteins were identified in meropenem-treated bacteria. These proteins were primarily enzymes involved in defence against oxidative stress as well as glycolytic enzymes. LysM domain/BON superfamily protein was found overexpressed by >12-fold. STRING-10 was used to determine protein-protein interaction among the overexpressed proteins and to predict their functional associations. This study demonstrated that treatment with meropenem resulted in upregulation of various proteins involved in defence and repair mechanisms along with enzymes of energy metabolism. CONCLUSIONS These overexpressed proteins may play an important role in bacterial resistance mechanisms against carbapenems, however their role in resistance needs to be further validated. High expression of lysine M domain/BON superfamily protein may indicate its possible involvement in modulating the bacterial response to antibiotic stress, but its actual role requires more investigation. These findings may also help in the development of newer therapeutic agents or diagnostic markers against carbapenem resistance.
Collapse
Affiliation(s)
- Arbab Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Mohammad Faheem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
17
|
Sharma D, Lata M, Singh R, Deo N, Venkatesan K, Bisht D. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS. Front Microbiol 2016; 7:1816. [PMID: 27895634 PMCID: PMC5108770 DOI: 10.3389/fmicb.2016.01816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial DiseasesAgra, India
| |
Collapse
|
18
|
Venkatesan A, Palaniyandi K, Sharma D, Bisht D, Narayanan S. Functional Characterization of PknI-Rv2159c Interaction in Redox Homeostasis of Mycobacterium tuberculosis. Front Microbiol 2016; 7:1654. [PMID: 27818650 PMCID: PMC5073100 DOI: 10.3389/fmicb.2016.01654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis adapts to stress conditions by responding to the signals from its external environment. M. tuberculosis genome encodes 11 eukaryotic like serine/threonine protein kinases (STPK) and their importance in regulating the physiology and virulence of the bacteria are being explored. Previous study from our lab identified the M. tuberculosis STPK, PknI interacts with two peroxidase proteins such as Rv2159c and Rv0148. In this study, we have characterized the biological function behind the PknI-Rv2159c interaction in M. tuberculosis. Point mutation of Ala-Gly-Trp motif identified that only Ala49 and Gly50 amino acids of Rv2159c are responsible for interaction and there is no phosphorylation involved in the PknI-Rv2159c interaction. Rv2159c is a member from the carboxymuconolactone decarboxylase family with peroxidase activity. Enzymatic assays with catalytic site point mutants showed that Cys84 of Rv2159c was responsible for its alkylhydroperoxidase activity. Interestingly, interaction with PknI increased its peroxidase activity by several folds. Gene knockdown of Rv2159c in M. tuberculosis showed increased sensitivity to peroxides such as cumene hydroperoxide and hydrogen peroxide. Proteomic analysis of differentially expressing Rv2159c strains by 2D gel electrophoresis and mass spectrometry revealed the differential abundance of 21 proteins. The total absence of oxidoreductase, GuaB1 suggests the essential role of Rv2159c in redox maintenance. Our findings provide new insights on signaling mechanisms of PknI in maintaining the redox homeostasis during oxidative stresses.
Collapse
Affiliation(s)
- Arunkumar Venkatesan
- Department of Immunology, National Institute for Research in TuberculosisChennai, India
| | - Kannan Palaniyandi
- Department of Immunology, National Institute for Research in TuberculosisChennai, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial DiseasesAgra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial DiseasesAgra, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in TuberculosisChennai, India
| |
Collapse
|
19
|
Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan K, Shukla S, Bisht D. M. tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance. Biochem Biophys Res Commun 2016; 478:908-912. [PMID: 27521892 DOI: 10.1016/j.bbrc.2016.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
Tuberculosis is an infectious disease, caused by one of the most successful human pathogen, Mycobacterium tuberculosis. Aminoglycosides, Amikacin (AK) & Kanamycin (KM) are commonly used to treat drug resistant tuberculosis. They target the protein synthesis machinery by interacting with several steps of translation. Several explanations have been proposed to explain the mechanism of aminoglycoside resistance but still our information is inadequate. Iron storing/interacting proteins were found to be overexpressed in aminoglycosides resistant isolates. Iron assimilation and utilization in M. tuberculosis plays a crucial role in growth, virulence and latency. To establish the relationship of ferritin with AK & KM resistance ferritin (Rv3841/bfrB) was cloned, expressed and antimicrobial drug susceptibility testing (DST) was carried out. Rv3841/bfrB gene was cloned and expressed in E. coli BL21 using pQE2 expression vector. Etest results for DST against AK & KM showed that the minimum inhibitory concentration (MIC) of ferritin recombinant cells was changed. Recombinants showed two fold changes in MIC with AK and three fold with KM E-strips. Overexpression of ferritin reflect the MIC shift which might be playing a critical role in the survival of mycobacteria by inhibiting/modulating the effects of AK & KM. String analysis also suggests that ferritin interacted with few proteins which are directly and indirectly involved in M. tuberculosis growth, Iron assimilation, virulence, resistance, stresses and latency.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Mohammad Faheem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Sangeeta Shukla
- School of Studies (SOS) Zoology, Jiwaji University, Gwalior, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India.
| |
Collapse
|