1
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Wang C, He Y. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. MICROMACHINES 2023; 15:91. [PMID: 38258210 PMCID: PMC10819459 DOI: 10.3390/mi15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
Micromixers play a crucial role as essential components in microfluidic analysis systems. This paper introduces a novel micromixer designed by harnessing electrokinetic vortices arising on the surface of a Janus droplet within a microchannel. The Janus droplet is characterized by different polarities of charges on its two sides (upstream part and downstream part). In the presence of a direct current electric field, the droplet's surface generates electroosmotic flows in opposite directions, resulting in the formation of vortices and facilitating solution mixing. Results from numerical simulations suggest that a better mixing performance of the micromixer is associated with both a higher absolute value of the zeta potential ratio between the downstream and upstream surfaces of the Janus droplet and a larger downstream surface area. Additionally, this study reveals that microchannel dimensions significantly influence the performance of the micromixer. Smaller microchannel widths and heights correspond to a larger mixing index for the micromixer. The micromixer presented in this study features a simple structure, easy fabrication, and holds promising application potential.
Collapse
Affiliation(s)
- Chengfa Wang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yehui He
- Computer Center, The Second Hospital of Dalian Medical University, Dalian 116023, China;
| |
Collapse
|
3
|
Qi Z, Sun Z, Li N, Li W, Sun M, Liu Y, Wang Z. Effect of electric field intensity on electrophoretic migration and deformation of oil droplets in O/W emulsion under DC electric field: A molecular dynamics study. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Li M, Li D, Song Y, Li D. Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics. J Colloid Interface Sci 2022; 612:23-34. [PMID: 34974255 DOI: 10.1016/j.jcis.2021.12.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Separations of particles and cells are indispensable in many microfluidic systems and have numerous applications in chemistry and biomedicine. The interface of aqueous two-phase system (ATPS) can act as a liquid filter. Under electric field stimuli, the selective transfer of targets across the liquid-liquid interface are expected for particles and cells separation. EXPERIMENTS The separations of particles and cells based on ATPS electrophoresis in a microfluidic chip were investigated. A systematical study of the mechanism of ATPS electrophoresis was performed first by employing polystyrene (PS) particles. Subsequently, the separations of particles and microalgae cells were demonstrated. FINDINGS The electrophoretic transfer of particles across the interface of ATPS is determined by multi-parameters, including the strength of electric pulse, particle size, zeta potential, and hydrophobicity of the particle. The continuous separations of particles/cells can be achieved through the controllable transfer of target particles/cells across the interface under electric pulses in a microfluidic chip. By simply turning the magnitude of the applied electric pulse, the technique is suitable for different purposes, for example, the separations of particles and cells, purification of cells, and viability identification of cells. This tunable separation approach opens opportunities in multidimensional particle and cell sorting for the fields of seed selection of microorganisms, environmental assessment, and biomedical research.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
6
|
Wang C, Gao Q. 3D Numerical Study of the Electrokinetic Motion of a Microparticle Adsorbed at a Horizontal Oil/Water Interface in an Infinite Domain. ACS OMEGA 2022; 7:4062-4070. [PMID: 35155900 PMCID: PMC8830061 DOI: 10.1021/acsomega.1c05405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
This work builds a three-dimensional (3D) simulation model and studies the electrokinetic velocity of a microparticle adsorbed at a horizontal oil/water interface in an infinite domain. The effects of the interface zeta potentials, the electric field, the oil dynamic viscosity, and the contact angle between the particle and the oil/water interface are investigated in detail. The results show that in an infinite oil/water interface system, both the negatively charged mobile oil/water interface and the negatively charged particle adsorbed to it move toward the positive electrode of the DC electric field, and the particle velocity increases along with the contact angle, the electric field strength, and the absolute values of negative zeta potential of both the particle and the oil/water interface. When the oil/water interface is positively charged with a relatively small zeta potential, the negatively charged microparticle also moves in the opposite direction of the electric field. The larger the oil dynamic viscosity, the smaller the electrokinetic velocity of the microparticle at the interface. Additionally, the numerical simulation results are compared with the reported experiment results under the same conditions, and they have good agreement.
Collapse
Affiliation(s)
- Chengfa Wang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qi Gao
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
7
|
Zhang M, Zhang H, He M, Wang L, Yang H, Song Y. Controlled diffusion of nanoparticles by viscosity gradient for photonic crystal with dual photonic band gaps. NANOTECHNOLOGY 2020; 31:435604. [PMID: 32659753 DOI: 10.1088/1361-6528/aba57c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coalescence of droplets containing nanoparticles has been paid much attention regarding fabrication of functional photonic crystal (PC) patterns. However, most studies focus on the coalescence of droplets containing the same nanoparticles. Currently, an active challenge comes from the coalescence of droplets containing different nanoparticles due to the spontaneous mutual diffusion of different nanoparticles between coalescing miscible droplets driven by the released Gibbs free energy. Such diffusion breaks the self-assembly of nanoparticles into promising PCs with dual photonic band gaps (PBGs). In this work, a viscosity gradient was induced in coalescing droplets containing different nanoparticles to control the diffusion of nanoparticles and impede the diffusion across the coalescing interface. Nanoparticles diffused along the viscosity gradient to droplet surfaces and self-assembled into a period structure which enhanced the interaction of nanoparticles and contributed to impeding the random diffusion between droplets. At the same time, the high viscosity at the coalescing interface slowed down the horizontal movement of nanoparticles further and consequently the diffusion of nanoparticles across the interface was impeded. By use of such controlled diffusion of nanoparticles in the viscosity gradient, PCs with PBGs were achieved. These results demonstrate the controlled diffusion of nanoparticles during the coalescence of miscible droplets to facilely fabricate PCs with PBGs in the absence of an existing external field.
Collapse
Affiliation(s)
- Min Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266000, People's Republic of China. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Li M, Li D. Nonlinear electrokinetic motion of electrically induced Janus droplets in microchannels. J Colloid Interface Sci 2019; 538:277-285. [DOI: 10.1016/j.jcis.2018.11.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
9
|
Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution. J Colloid Interface Sci 2018; 532:657-665. [DOI: 10.1016/j.jcis.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022]
|
10
|
Li M, Li D. Microvalve using electrokinetic motion of electrically induced Janus droplet. Anal Chim Acta 2018; 1021:85-94. [DOI: 10.1016/j.aca.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/13/2017] [Accepted: 03/05/2018] [Indexed: 01/12/2023]
|
11
|
Wang C, Li M, Song Y, Pan X, Li D. Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel. Electrophoresis 2017; 39:807-815. [PMID: 28926100 DOI: 10.1002/elps.201700289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/10/2022]
Abstract
The electrokinetic motion of a negatively charged spherical particle at an oil-water interface in a microchannel is numerically investigated and analyzed in this paper. A three-dimensional (3D) transient numerical model is developed to simulate the particle electrokinetic motion. The channel wall, the surface of the particle and the oil-water interface are all considered negatively charged. The effects of the direct current (DC) electric field, the zeta potentials of the particle-water interface and the oil-water interface, and the dynamic viscosity ratio of oil to water on the velocity of the particle are studied in this paper. In addition, the influences of the particle size are also discussed. The simulation results show that the micro-particle with a small value of negative zeta potential moves in the same direction of the external electric field. However, if the zeta potential value of the particle-water interface is large enough, the moving direction of the particle is opposite to that of the electric field. The velocity of the particle at the interface increases with the increase in the electric field strength and the particle size, but decreases with the increase in the dynamic viscosity ratio of oil to water, and the absolute value of the negative zeta potentials of both the particle-water interface and the oil-water interface. This work is the first numerical study of the electrokinetic motion of a charged particle at an oil-water interface in a microchannel.
Collapse
Affiliation(s)
- Chengfa Wang
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China.,Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xinxiang Pan
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Dongqing Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China.,Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
12
|
Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. J Chromatogr A 2017; 1501:151-160. [DOI: 10.1016/j.chroma.2017.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/21/2023]
|