1
|
Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Arabi M, Wang X, Ma J, Chen L. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
|
3
|
Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination. Talanta 2021; 221:121546. [DOI: 10.1016/j.talanta.2020.121546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
4
|
Tang S, Duan Y, Chang F, Jiang W, Zhang F, Liu Z, Yang Y, Liu C, Chen Y. The fabrication of carboxylic acid-functionalized porous layer open tube column and its application in hydrophilic interaction chromatography for small polar molecules. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1848864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shiyun Tang
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yuanxing Duan
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Feng Chang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, China
| | - Wei Jiang
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Fengmei Zhang
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Zhihua Liu
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yuting Yang
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunbo Liu
- YunnanKey Laboratory of Tobacco Chemistry, Research and Development of Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- College of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2020; 224:121794. [PMID: 33379023 DOI: 10.1016/j.talanta.2020.121794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Since chiral recognition mechanism based on molecularly imprinted polymers immerged, it has assisted countless chemical and electrochemical analytical sample preparation techniques. It has done this by enhancing the enatioseparation abilities of these techniques. The preparation and optimization of chiral molecularly imprinted polymers (CMIPs) are two favored methods in the separation and sensor fields. This review aims to present an overview of advances in the preparation and application of CMIPs in analytical approaches in different available formats (eg. column, monolithic column, cartridge, membrane, nanomaterials, pipette tip and stir bar sorptive) over the last decade. In addition, progress in the preparation and development of CMIPs-based sensor fields have been also discussed. Finally, the main application challenges of CMIPs are also summarily explained, as well as upcoming prospects in the field.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, Akademiska stråket 1, S-171 64, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Akademiska stråket 1, S-171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
7
|
Wang H, Yuan L, Zhu H, Jin R, Xing J. Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixiang Wang
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business University (BTBU) Beijing China
| | - Lili Yuan
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
| | - Hua Zhu
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business University (BTBU) Beijing China
| | - Risheng Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Nanjing China
| | - Jiudong Xing
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
| |
Collapse
|
8
|
Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary Electrophoresis: Trends and Recent Advances. Anal Chem 2018; 90:1464-1481. [PMID: 29298038 PMCID: PMC5994730 DOI: 10.1021/acs.analchem.8b00015] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Iro K Ventouri
- TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Tarongoy FM, Haddad PR, Quirino JP. Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis 2017; 39:34-52. [PMID: 28815745 DOI: 10.1002/elps.201700280] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/11/2022]
Abstract
Interest in open-tubular capillary electrochromatography (OT-CEC) continues to thrive because of the inherent advantage of OT-CEC combining the high efficiency of capillary electrophoresis and the high selectivity of high performance liquid chromatography. For the period 2016 to 2017, novel materials have been developed as first-time stationary phases for OT-CEC and are grouped in this review as polymer-based materials, frameworks, nanoparticles, graphene-based materials, and biomaterials. Coating and fabrication methods mostly rely on covalent coating strategies while non-covalent immobilisation strategies like electrostatic assembly are notably still being employed. The concern of overcoming phase ratio challenges in OT-CEC coatings have also generated adoption of combined coating strategies including multi-layering, layer-by-layer self-assembly and methods adapted from nanofilm fabrications like epitaxial growth, liquid phase deposition, or nucleation of crystal growth. The emergence of non-conventional coating characterisation methods such as transmission electron microscopy, X-ray diffraction or X-ray photoelectron spectroscopy is also discussed.
Collapse
Affiliation(s)
- Faustino M Tarongoy
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia.,Chemistry Department, College of Arts and Sciences, Xavier University-Ateneo de Cagayan, Cagayan de Oro, Misamis Oriental, Philippines
| | - Paul R Haddad
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|