1
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
2
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
3
|
Takayanagi T, Miyake K, Seto M, Mizuguchi H, Okabe H, Matsuda N. Conjugation monitoring of gold nanoparticles with alkanedithiols by capillary zone electrophoresis. ANAL SCI 2023:10.1007/s44211-023-00299-4. [PMID: 36811184 DOI: 10.1007/s44211-023-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Alkanedithiols were used for the conjugation of gold nanoparticles (AuNP) prepared by a solution plasma process. Capillary zone electrophoresis was utilized for the monitoring of the conjugated AuNP. When 1,6-hexanedithiol (HDT) was used as a linker, a resolved peak from the AuNP was detected in the electropherogram; the resolved peak was attributed to the conjugated AuNP. The resolved peak was developed with increasing concentrations of HDT, while the peak of the AuNP decreased complementary. The resolved peak also tended to develop along with the standing time at least up to 7 weeks. The electrophoretic mobility of the conjugated AuNP was almost identical over the HDT concentrations examined, suggesting that the conjugation of the AuNP did not proceed further, such as aggregate/agglomerate formation. The conjugation monitoring was also examined with some dithiols and monothiols. Resolved peak of the conjugated AuNP was also detected with 1,2-ethanedithiol and 2-aminoethanethiol.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Graduate School of Science and Technology for Innovation, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Minamo Seto
- Faculty of Science and Technology, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan.
| |
Collapse
|
4
|
Niu X, Yan S, Zhao R, Han S, Cao K, Li H, Wang K. Chiral template-induced porphyrin-based self-assembled materials for electrochemical chiral sensing. Mikrochim Acta 2023; 190:61. [PMID: 36662318 DOI: 10.1007/s00604-022-05629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
Chirality plays a key role in many fields of natural sciences as well as life sciences. Chiral materials are widely developed and used for electrochemical chiral recognition. In recent years, carbon quantum dots (CQDs) have been widely used as a novel carbon nanomaterial due to their excellent charge transfer properties, good biocompatibility, and low cost. The special structure of π-conjugated porphyrin attracts attention. Supramolecular self-assembly shows a way to construct chiral materials by self-assembling simple molecules into chiral composites. Herein, we demonstrate the self-assembly of achiral porphyrins induced by chiral carbon quantum dots assembled from L- and or D-tryptophan (L- and or D-Trp) with carbon quantum dots, resulting in 5,10,15,20-tetrakis (4-carboxyPheyl) (TCPP) self-assembled structure. The electrochemical chiral recognition of chiral self-assembled materials was studied using Phenylalanine (Phe) enantiomer as a chiral analyte. Electrochemical chiral recognition results showed that the chiral self-assembled materials induced by chiral templates have a good ability to discriminate Phe enantiomers. Therefore, this research provides a new idea for the synthesis of chiral composites and further expands applications to electrochemical chiral recognition.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Sha Han
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Kunjie Cao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
5
|
Takayanagi T, Miyake K, Iwasaki S, Uehara D, Mizuguchi H, Okabe H, Matsuda N. Highly stable gold nanoparticles in an aqueous solution without any stabilizer prepared by a solution plasma process evaluated through capillary zone electrophoresis. ANAL SCI 2022; 38:1199-1206. [PMID: 35788911 DOI: 10.1007/s44211-022-00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Gold nanoparticles (AuNP) were prepared by a solution plasma process in the presence of H2O2, and they were dispersed in an aqueous solution without any stabilizer generally used. The dispersion stability of the AuNP in an aqueous solution was evaluated by capillary zone electrophoresis (CZE). An anionic broad peak was detected with the AuNP by CZE based on its wide variations in size and net charge. The broad peak also suggests that the AuNP were well dispersed in an aqueous solution. The dispersion stability of AuNP was evaluated from the viewpoints of long-term dispersion, salt concentration, and organic co-solvent. The anionic broad peak attributed to the dispersed AuNP was successfully detected for at least 55 weeks from the preparation with less shot signals of the aggregates. The AuNP was also well dispersed in aqueous NaCl solutions with its concentrations up to 30 mmol L-1, as well as with ethanol co-solvent up to 40%(v/v). The AuNP prepared by the solution plasma process was proved to be highly stable in an aqueous solution.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Raduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Sohta Iwasaki
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Daiki Uehara
- Department of Science and Technology, Faculty of Science and Technology, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan.
| |
Collapse
|
6
|
Oliveira L, Arroyave M, Pistonesi MF, Fragoso W, Springer V. Capillary electrophoresis coupled to chemometrics for analysis of carbon dots in nanoparticles mixtures. Electrophoresis 2022; 43:901-908. [DOI: 10.1002/elps.202100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Levi Oliveira
- Grupo de Estudos Avançados em Química Analítica Department of Chemistry Federal University of Paraíba João Pessoa Brazil
| | - Manuel Arroyave
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| | - Marcelo F. Pistonesi
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| | - Wallace Fragoso
- Grupo de Estudos Avançados em Química Analítica Department of Chemistry Federal University of Paraíba João Pessoa Brazil
| | - Valeria Springer
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| |
Collapse
|
7
|
Adelantado C, Zougagh M, Ríos Á. Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View. Crit Rev Anal Chem 2021; 52:1094-1111. [PMID: 33427485 DOI: 10.1080/10408347.2020.1859983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An overview on the increasing role of capillary electrophoresis in characterization and direct analysis of nanomaterials is herein presented. The niche of electrophoretic approaches in nanometrology is so relevant that nonmetallic, metal, metal oxide nanoparticles, and quantum dots have been analyzed to be targeted via capillary electrophoresis with conventional detection systems or coupling arrangements aimed at increasing selectivity and sensitivity toward either pristine or conjugated nanoparticles. Moreover, parameters altering intrinsic properties of nanoparticles may be optimized to gather the desired results and identify nanomaterials according to their size, shape, or associations with binding agents. The usefulness and quickness of capillary electrophoresis for quantifying or screening ultrasmall-sized particles enables this technique to set an example for analysis of standards or previously synthesized nanostructures in research or routine laboratories. Abundant evidence of the suitability of electrophoretic approaches for characterization and direct determination of nanomaterials in actual samples has been provided in this review, together with a discussion about hyphenation with state-of-the art detectors and comparison between capillary electrophoresis with other separation approaches. This permits scientific community to be optimistic in the short term.
Collapse
Affiliation(s)
- Carlos Adelantado
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| |
Collapse
|
8
|
Kruszewska J, Matczuk M, Skorupska S, Grabowska-Jadach I, Hernández EP, Timerbaev A, Jarosz M. Characterization of quantum dots in cancer cytosol using ICP-MS-based combined techniques. Anal Biochem 2019; 584:113387. [PMID: 31394055 DOI: 10.1016/j.ab.2019.113387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023]
Abstract
Knowledge of the intracellular behavior of quantum dots (QDs), which encompasses the antiproliferative effect on living cells, is still limited. For this reason, the transformations of CdSeS/ZnS-based QDs in cancer cytosol were examined using capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) hyphenated with inductively coupled plasma MS (ICP-MS). CE-ICP-MS method revealed the dose- and time-dependent speciation changes of QDs in the cytosol, while HPLC-ICP-MS (in the size-exclusion chromatography mode) allowed further characterization of the resulting Cd species. In such an appraisal, the decent CE advantage of high resolution is well complemented by higher sensitivity of HPLC (LOD 4.0 × 10-10 and 5.4 × 10-12 mol/L Cd, respectively). Additionally, the influence of serum protein corona on the surface of QDs on their uptake by Hep G2 cancer cells was investigated by direct ICP-MS analysis that revealed that the conjugated proteins greatly reduce the particle internalization.
Collapse
Affiliation(s)
- Joanna Kruszewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Sandra Skorupska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Ilona Grabowska-Jadach
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Emma Pérez Hernández
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| |
Collapse
|
9
|
López-Sanz S, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC, Ríos Á. Analytical metrology for nanomaterials: Present achievements and future challenges. Anal Chim Acta 2019; 1059:1-15. [DOI: 10.1016/j.aca.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/01/2023]
|
10
|
Kitte SA, Fereja TH, Halawa MI, Lou B, Li H, Xu G. Recent advances in nanomaterial-based capillary electrophoresis. Electrophoresis 2019; 40:2050-2057. [PMID: 31062878 DOI: 10.1002/elps.201800534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
This review gives a summary of applications of different nanomateials, such as gold nanoparticles (AuNPs), carbon-based nanoparticles, magnetic nanoparticles (MNPs), and nano-sized metal organic frameworks (MOFs), in electrophoretic separations. This review also emphasizes the recent works in which nanoparticles (NPs) are used as pseudostationary phase (PSP) or immobilized on the capillary surface for enhancement of separation in CE, CEC, and microchips electrophoresis.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
11
|
Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Xu F. Review of analytical studies on TiO 2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. CHEMOSPHERE 2018; 212:662-677. [PMID: 30173113 DOI: 10.1016/j.chemosphere.2018.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industrial and consumer products. Comprehensive and accurate detection, characterization, and quantification of TiO2 NPs are important for understanding the specific property, behavior, fate, and potential risk of TiO2 NPs in natural and engineered environments. This review provides a summary of recent analytical studies of TiO2 NPs and their aggregation, coagulation, flocculation, sedimentation, stabilization under a wide range of conditions and processes. Much attention is paid on sample preparation prior to an analytical procedure, analysis of particle size, morphology, structure, state, chemical composition, surface properties, etc., via measurements of light scattering and zeta potential, microscopy, spectroscopy, and related techniques. Recently, some advanced techniques have also been explored to characterize TiO2 NPs and their behaviors in the environment. Many issues must be considered including distinction between engineered TiO2 NPs and their naturally occurring counterparts, lack of reference materials, interlaboratory comparison, when analyzing low concentrations of TiO2 NPs and their behaviors in complex matrices. No "ideal" technique has emerged as each technique has its own merits, biases, and limitations. Multi-method approach is highlighted to provide in-depth information. Improvements of analytical method for determination of TiO2 NPs have been recommended to be together with exposure modelers and ecotoxicologists for maximum individual and mutual benefit. Future work should focus on developing analytical technology with the advantages of being reliable, sensitive, selective, reproducible, and capable of in situ detection in complicated sample system.
Collapse
Affiliation(s)
- Fang Xu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, 27599-7431, USA.
| |
Collapse
|
13
|
Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Miniaturized liquid chromatography coupled on-line to in-tube solid-phase microextraction for characterization of metallic nanoparticles using plasmonic measurements. A tutorial. Anal Chim Acta 2018; 1045:23-41. [PMID: 30454572 DOI: 10.1016/j.aca.2018.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
This tutorial aims at providing guidelines for analyzing metallic nanoparticles (NPs) and their dispersions by using methods based on miniaturized liquid chromatography with diode array detection (MinLC-DAD) and coupled on-line to in-tube solid-phase microextraction (IT-SPME). Some practical advice and considerations are given for obtaining reliable results. In addition, this work outlines the potential applications that set these methodologies apart from microscopy-related techniques, dynamic light scattering, single particle ICP-MS, capillary electrophoresis, field-flow fractionation and other chromatographic configurations, which are discussed and mainly seek to accomplish size estimation and NP separation, speciation analysis and quantification of mainly AgNPs and AuNPs. MinLC-DAD has the potential to estimate the NP concentration and from it the average size of unknown samples by calibrating with a single standard, as well as studying potentially non-spherical particles and stability-related properties of their dispersions. While keeping the signal dependency with concentration and increasing the method sensitivity, IT-SPME-MinLC-DAD goes further allowing for the assessment of the dispersant effect and ultimately changes in the nanoparticle surroundings that range from modifications of the hydrodynamic diameter to the exposure to different reagents and matrices. The methodology can still be improved by either exploring newer IT-SPME adsorbents or by assaying new system configurations. Taking into account that this technique gives complementary information in relation to other techniques discussed here, this tutorial serves as a guide for analyzing metallic NPs towards a better understanding of the particle behavior under different scenarios.
Collapse
|
15
|
Vaneckova T, Smerkova K, Zitka J, Hynek D, Zitka O, Hlavacek A, Foret F, Adam V, Vaculovicova M. Upconversion nanoparticle bioconjugates characterized by capillary electrophoresis. Electrophoresis 2018; 39:2246-2252. [PMID: 29882600 DOI: 10.1002/elps.201700483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/06/2022]
Abstract
Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser-induced fluorescence detection was used to investigate the behavior of carboxyl-silica-coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide-mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.
Collapse
Affiliation(s)
- Tereza Vaneckova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jan Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Antonin Hlavacek
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno, Czech Republic
| | - Frantisek Foret
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|