1
|
Ren Y, Ye P, Zhang L, Zhao J, Liu J, Lei J, Wang L. Three-dimensional porous wood monolithic columns for efficient purification of spike glycoprotein of SARS-CoV-2. Int J Biol Macromol 2023; 248:125713. [PMID: 37437676 DOI: 10.1016/j.ijbiomac.2023.125713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Considerable research has been devoted to finding a cost-effective chromatographic matrix with efficient adsorption and high throughput. Wood exhibits complex micro-network structures that make it a powerful contender for a novel environment-friendly chromatographic matrix material. We demonstrate a novel strategy to manufacture a wood monolithic column, which chemically modified the wood and imported diethyl aminoethyl, diethylamine, and amino groups. This wood monolithic column can maintain fully monolithic column performances and highly selective to spike glycoprotein of SARS-CoV-2 by ion exchange force. The wood monolithic column was evaluated by static adsorption, dynamic adsorption, and frontal analysis. The results showed that the static adsorption capacity of the wood monolithic column with 2-diethylaminoethylchloride hydrochloride for bovine serum albumin was 14.72 mg/g, and the adsorption process was chemisorption. In addition, it retained 80 % adsorption capacity after 110 repeated adsorption-elution cycles.
Collapse
Affiliation(s)
- Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Černigoj U, Nemec B, Štrancar A. Sample displacement chromatography of monoclonal antibody charge variants and aggregates. Electrophoresis 2021; 43:527-534. [PMID: 34894359 DOI: 10.1002/elps.202100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022]
Abstract
The rise of biosimilar monoclonal antibodies has renewed the interest in monoclonal antibody (mAb) charge variants composition and separation. The sample displacement chromatography (SDC) has the potential to overcome the low separation efficiency and productivity associated with bind-elute separation of mAb charge variants. SDC in combination with weak cation exchanging macroporous monolithic chromatographic column was successfully implemented for a separation of charge variants and aggregates of monoclonal IgG under overloading conditions. The charge variants composition was at-line monitored by a newly developed, simple and fast analytical method, based on weak cation exchange chromatography. It was proven that basic charge variants acted as displacers of IgG molecules with lower pI, when the loading was performed 1 to 1.5 pH unit below the pI of acidic charge variants. The efficiency of the SDC process is flow rate independent due to a convection-based mass transfer on the macroporous monolith. The productivity of the process at optimal conditions is 35 mg of purified IgG fraction per milliliters of monolithic support with 75-80% recovery. As such, an SDC approach surpasses the standard bind-elute separation in the productivity for a factor of 3, when performed on the same column. The applicability of the SDC approach was confirmed for porous particle-based column as well, but with 1.5 lower productivity compared to the monoliths.
Collapse
Affiliation(s)
- Urh Černigoj
- BIA Separations d.o.o, a Sartorius Company, Ajdovščina, Slovenia
| | - Blaž Nemec
- BIA Separations d.o.o, a Sartorius Company, Ajdovščina, Slovenia
| | - Aleš Štrancar
- BIA Separations d.o.o, a Sartorius Company, Ajdovščina, Slovenia
| |
Collapse
|
3
|
Mao Y, Fan R, Li R, Ye X, Kulozik U. Flow-through enzymatic reactors using polymer monoliths: From motivation to application. Electrophoresis 2020; 42:2599-2614. [PMID: 33314167 DOI: 10.1002/elps.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
The application of monolithic materials as carriers for enzymes has rapidly expanded to the realization of flow-through analysis and bioconversion processes. This expansion is partly attributed to the absence from diffusion limitation in many monoliths-based enzyme reactors. Particularly, the relatively ease of introducing functional groups renders polymer monoliths attractive as enzyme carriers. After summarizing the motivation to develop enzymatic reactors using polymer monoliths, this review reports the most recent applications of such reactors. Besides, the present review focuses on the crucial characteristics of polymer monoliths affecting the immobilization of enzymes and the processing parameters dictating the performance of the resulting enzymatic reactors. This review is intended to provide a guideline for designing and applying flow-through enzymatic reactors using polymer monoliths.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Renkuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
4
|
Antipchik M, Dzhuzha A, Sirotov V, Tennikova T, Korzhikova‐Vlakh E. Molecularly imprinted macroporous polymer monolithic layers for L‐phenylalanine recognition in complex biological fluids. J Appl Polym Sci 2020. [DOI: 10.1002/app.50070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mariia Antipchik
- Institute of Macromolecular Compounds Russian Academy of Sciences St. Petersburg Russia
| | | | - Vasilii Sirotov
- Institute of Chemistry Saint‐Petersburg State University St. Petersburg Russia
| | - Tatiana Tennikova
- Institute of Chemistry Saint‐Petersburg State University St. Petersburg Russia
| | | |
Collapse
|
5
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
6
|
Current trends in affinity-based monoliths in microextraction approaches: A review. Anal Chim Acta 2019; 1084:1-20. [DOI: 10.1016/j.aca.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
|
7
|
Volokitina M, Krutyakova M, Sirotov V, Larionov M, Tennikova T, Korzhikova-Vlakh E. Protein biochips based on macroporous polymer supports: Material properties and analytical potential. J Pharm Biomed Anal 2018; 165:242-250. [PMID: 30557782 DOI: 10.1016/j.jpba.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 01/30/2023]
Abstract
A series of rigid macroporous polymer layers differed by hydrophobic-hydrophilic properties was synthesized in situ in preliminary fabricated wells and applied as the platforms for protein biochips. Scanning electron microscopy, etalon porosimetry and BET analysis were used for materials characterization. The comparison of analytical efficiency of the developed platforms allowed for the choice of the most optimal polymer, as well as the evaluation of impact of material porous properties. The quantitative parameters of affinity interaction between two different protein pairs were calculated depending on biochip characteristics using the developed analytical protocol. Moreover, the described biochips were successfully tested to detect acetylcholinesterase via catalytic reaction followed by the formation of fluoresceine as a product. Different parameters of enzymatic reaction were calculated for the reaction on a chip and compared to those established for in solution process.
Collapse
Affiliation(s)
- Mariia Volokitina
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia; Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004, St. Petersburg, Russia
| | - Mariia Krutyakova
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia
| | - Vasilii Sirotov
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia
| | - Maksim Larionov
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia.
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, Petrodvorez, 198584, St. Petersburg, Russia; Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004, St. Petersburg, Russia
| |
Collapse
|
8
|
García Schejtman SD, Igarzabal CIA, Martinelli M. Synthesis and characterization of novel dendritic macroporous monoliths. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|