1
|
Carr CE, Ramírez-Colón JL, Duzdevich D, Lee S, Taniguchi M, Ohshiro T, Komoto Y, Soderblom JM, Zuber MT. Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). ASTROBIOLOGY 2023; 23:1056-1070. [PMID: 37782210 DOI: 10.1089/ast.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.
Collapse
Affiliation(s)
- Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - José L Ramírez-Colón
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Duzdevich
- Massachusetts General Hospital, Department of Molecular Biology, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
- Current address: Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Sam Lee
- MIT Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, USA
| | - Masateru Taniguchi
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Takahito Ohshiro
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Yuki Komoto
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Jason M Soderblom
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - M T Zuber
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Van Volkenburg T, Benzing JS, Craft KL, Ohiri K, Kilhefner A, Irons K, Bradburne C. Microfluidic Chromatography for Enhanced Amino Acid Detection at Ocean Worlds. ASTROBIOLOGY 2022; 22:1116-1128. [PMID: 35984944 PMCID: PMC9508454 DOI: 10.1089/ast.2021.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Increasing interest in the detection of biogenic signatures, such as amino acids, on icy moons and bodies within our solar system has led to the development of compact in situ instruments. Given the expected dilute biosignatures and high salinities of these extreme environments, purification of icy samples before analysis enables increased detection sensitivity. Herein, we outline a novel compact cation exchange method to desalinate proteinogenic amino acids in solution, independent of the type and concentration of salts in the sample. Using a modular microfluidic device, initial experiments explored operational limits of binding capacity with phenylalanine and three model cations, Na+, Mg2+, and Ca2+. Phenylalanine recovery (94-17%) with reduced conductivity (30-200 times) was seen at high salt-to-amino-acid ratios between 25:1 and 500:1. Later experiments tested competition between mixtures of 17 amino acids and other chemistries present in a terrestrial ocean sample. Recoveries ranged from 11% to 85% depending on side chain chemistry and cation competition, with concentration shown for select high affinity amino acids. This work outlines a nondestructive amino acid purification device capable of coupling to multiple downstream analytical techniques for improved characterization of icy samples at remote ocean worlds.
Collapse
Affiliation(s)
| | | | - Kathleen L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Korine Ohiri
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Ashley Kilhefner
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Kristen Irons
- University of North Carolina at Chapel Hill College of Arts and Sciences, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
3
|
Abrahamsson V, Henderson BL, Herman J, Zhong F, Lin Y, Kanik I, Nixon CA. Extraction and Separation of Chiral Amino Acids for Life Detection on Ocean Worlds Without Using Organic Solvents or Derivatization. ASTROBIOLOGY 2021; 21:575-586. [PMID: 33533680 DOI: 10.1089/ast.2020.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ instrumentation that can detect amino acids at parts-per-billion concentration levels and distinguish an enantiomeric excess of either d- or l-amino acids is vital for future robotic life-detection missions to promising targets in our solar system. In this article, a novel chiral amino acid analysis method is described, which reduces the risk of organic contamination and spurious signals from by-products by avoiding organic solvents and organic additives. Online solid-phase extraction, chiral liquid chromatography, and mass spectrometry were used for automated analysis of amino acids from solid and aqueous environmental samples. Carbonated water (pH ∼3, ∼5 wt % CO2 achieved at 6 MPa) was used as the extraction solvent for solid samples at 150°C and as the mobile phase at ambient temperature for chiral chromatographic separation. Of 18 enantiomeric amino acids, 5 enantiomeric pairs were separated with a chromatographic resolution >1.5 and 12 pairs with a resolution >0.7. The median lower limit of detection of amino acids was 2.5 μg/L, with the lowest experimentally verified as low as 0.25 μg/L. Samples from a geyser site (Great Fountain Geyser) and a geothermal spring site (Lemon Spring) in Yellowstone National Park were analyzed to demonstrate the viability of the method for future in situ missions to Ocean Worlds.
Collapse
Affiliation(s)
- Victor Abrahamsson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Julia Herman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang Zhong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Ying Lin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Icy Worlds, NASA Astrobiology Institute, Pasadena, California, USA
| | - Conor A Nixon
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
4
|
Mora MF, Kehl F, Tavares da Costa E, Bramall N, Willis PA. Fully Automated Microchip Electrophoresis Analyzer for Potential Life Detection Missions. Anal Chem 2020; 92:12959-12966. [DOI: 10.1021/acs.analchem.0c01628] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria F. Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Florian Kehl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Eric Tavares da Costa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Nathan Bramall
- Leiden Measurement Technology LLC, 1230 Mountain View-Alviso Road Suite A, Sunnyvale, California 94089, United States
| | - Peter A. Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| |
Collapse
|
5
|
Zhang J, Wen C, Zhang H, Duan Y, Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|