• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4622684)   Today's Articles (294)   Subscriber (49406)
For: Kong D, Chen Z. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis 2018;39:2912-2918. [PMID: 30194854 DOI: 10.1002/elps.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Number Cited by Other Article(s)
1
Hu K, Wang Y, Wang G, Wu Y, He Q. Research progress of the combination of COFs materials with food safety detection. Food Chem 2023;429:136801. [PMID: 37442087 DOI: 10.1016/j.foodchem.2023.136801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
2
Fu Y, Li Z, Hu C, Li Q, Chen Z. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. J Chromatogr A 2023;1705:464205. [PMID: 37442070 DOI: 10.1016/j.chroma.2023.464205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
3
Gu L, Guan J, Huang Z, Huo H, Shi S, Zhang D, Yan F. β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Electrophoresis 2022;43:1446-1454. [PMID: 35353923 DOI: 10.1002/elps.202200029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023]
4
Rasheed T, Khan S, Ahmad T, Ullah N. Covalent Organic Frameworks-Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. CHEM REC 2022;22:e202200062. [PMID: 35641392 DOI: 10.1002/tcr.202200062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Indexed: 12/21/2022]
5
Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography. Mikrochim Acta 2022;189:237. [DOI: 10.1007/s00604-022-05333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
6
Morphology Engineering for Covalent Organic Frameworks (COFs) by Surfactant Mediation and Acid Adjustment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2676-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
7
Li Q, Li Z, Fu Y, Clarot I, Boudier A, Chen Z. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Analyst 2021;146:6643-6649. [PMID: 34591047 DOI: 10.1039/d1an01402a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
8
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
9
In situ controllable synthesis of Schiff base networks porous polymer coatings for open-tubular capillary electrochromatography. Mikrochim Acta 2021;188:82. [PMID: 33586055 DOI: 10.1007/s00604-021-04740-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
10
Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Covalent organic frameworks for separation applications. Chem Soc Rev 2020;49:708-735. [PMID: 31993598 DOI: 10.1039/c9cs00827f] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
11
Hu LF, Yin SJ, Zhang H, Yang FQ. Recent developments of monolithic and open-tubular capillary electrochromatography (2017-2019). J Sep Sci 2020;43:1942-1966. [PMID: 31909566 DOI: 10.1002/jssc.201901168] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
12
Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Mikrochim Acta 2019;186:650. [PMID: 31501947 DOI: 10.1007/s00604-019-3741-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
13
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019;1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
14
Li Z, Mao Z, Chen Z. Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography. Mikrochim Acta 2019;186:449. [DOI: 10.1007/s00604-019-3576-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
15
Covalent organic framework incorporated chiral polymer monoliths for capillary electrochromatography. J Chromatogr A 2019;1602:481-488. [PMID: 31230876 DOI: 10.1016/j.chroma.2019.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA