1
|
Guo Y, Cupp‐Sutton KA, Zhao Z, Anjum S, Wu S. Multidimensional Separations in Top-Down Proteomics. ANALYTICAL SCIENCE ADVANCES 2023; 4:181-203. [PMID: 38188188 PMCID: PMC10769458 DOI: 10.1002/ansa.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 01/09/2024]
Abstract
Top-down proteomics (TDP) identifies, quantifies, and characterizes proteins at the intact proteoform level in complex biological samples to understand proteoform function and cellular mechanisms. However, analyzing complex biological samples using TDP is still challenging due to high sample complexity and wide dynamic range. High-resolution separation methods are often applied prior to mass spectrometry (MS) analysis to decrease sample complexity and increase proteomics throughput. These separation methods, however, may not be efficient enough to characterize low abundance intact proteins in complex samples. As such, multidimensional separation techniques (combination of two or more separation methods with high orthogonality) have been developed and applied that demonstrate improved separation resolution and more comprehensive identification in TDP. A suite of multidimensional separation methods that couple various types of liquid chromatography (LC), capillary electrophoresis (CE), and/or gel electrophoresis-based separation approaches have been developed and applied in TDP to analyze complex biological samples. Here, we reviewed multidimensional separation strategies employed for TDP, summarized current applications, and discussed the gaps that may be addressed in the future.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | | | - Zhitao Zhao
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Samin Anjum
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Si Wu
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| |
Collapse
|
2
|
Guzman NA, Guzman DE, Blanc T. Advancements in portable instruments based on affinity-capture-migration and affinity-capture-separation for use in clinical testing and life science applications. J Chromatogr A 2023; 1704:464109. [PMID: 37315445 DOI: 10.1016/j.chroma.2023.464109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
The shift from testing at centralized diagnostic laboratories to remote locations is being driven by the development of point-of-care (POC) instruments and represents a transformative moment in medicine. POC instruments address the need for rapid results that can inform faster therapeutic decisions and interventions. These instruments are especially valuable in the field, such as in an ambulance, or in remote and rural locations. The development of telehealth, enabled by advancements in digital technologies like smartphones and cloud computing, is also aiding in this evolution, allowing medical professionals to provide care remotely, potentially reducing healthcare costs and improving patient longevity. One notable POC device is the lateral flow immunoassay (LFIA), which played a major role in addressing the COVID-19 pandemic due to its ease of use, rapid analysis time, and low cost. However, LFIA tests exhibit relatively low analytical sensitivity and provide semi-quantitative information, indicating either a positive, negative, or inconclusive result, which can be attributed to its one-dimensional format. Immunoaffinity capillary electrophoresis (IACE), on the other hand, offers a two-dimensional format that includes an affinity-capture step of one or more matrix constituents followed by release and electrophoretic separation. The method provides greater analytical sensitivity, and quantitative information, thereby reducing the rate of false positives, false negatives, and inconclusive results. Combining LFIA and IACE technologies can thus provide an effective and economical solution for screening, confirming results, and monitoring patient progress, representing a key strategy in advancing diagnostics in healthcare.
Collapse
Affiliation(s)
- Norberto A Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America.
| | - Daniel E Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America; Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Timothy Blanc
- Eli Lilly and Company, Branchburg, NJ 08876, United States of America
| |
Collapse
|
3
|
Böhm D, Koall M, Matysik FM. Combining amperometry and mass spectrometry as a dual detection approach for capillary electrophoresis. Electrophoresis 2023; 44:492-500. [PMID: 36413610 DOI: 10.1002/elps.202200228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Dual detection concepts (DDCs) are becoming more and more popular in analytical chemistry. In this work, we describe a novel DDC for capillary electrophoresis (CE) consisting of an amperometric detector (AD) and a mass spectrometer (MS). This detector combination has a good complementarity as the AD exhibits high sensitivity, whereas the MS provides excellent selectivity. Both detectors are based on a destructive detection principle, making a serial detector arrangement impossible. Thus, for the realization of the DDC, the CE flow was divided into two parts with a flow splitter. The DDC was characterized in a proof-of-concept study with ferrocene derivates and a nonaqueous background electrolyte. We could show that splitting the CE flow was a suitable method for the instrumental realization of the DDC consisting of two destructive detectors. By lowering the height of the AD compared to the MS, it was possible to synchronize the detector responses. Additionally, for the chosen model system, we confirmed that the AD was much more reproducible and had lower limits of detection (LODs) than the MS. The LODs were identical for the DDC and the single-detection arrangements, indicating no sensitivity decrease due to the CE flow splitting. The DDC was successfully applied to determine the drug and doping agent trimetazidine.
Collapse
Affiliation(s)
- Daniel Böhm
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| | - Martin Koall
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
4
|
Böhm D, Koall M, Matysik F. Dead volume–free flow splitting in capillary electrophoresis. Electrophoresis 2022; 43:1438-1445. [DOI: 10.1002/elps.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Böhm
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| | - Martin Koall
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| | - Frank‐Michael Matysik
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| |
Collapse
|
5
|
Stolz A, Neusüß C. Characterisation of a new online nanoLC-CZE-MS platform and application for the glycosylation profiling of alpha-1-acid glycoprotein. Anal Bioanal Chem 2022; 414:1745-1757. [PMID: 34881393 PMCID: PMC8791864 DOI: 10.1007/s00216-021-03814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
The ever-increasing complexity of biological samples to be analysed by mass spectrometry has led to the necessity of sophisticated separation techniques, including multidimensional separation. Despite a high degree of orthogonality, the coupling of liquid chromatography (LC) and capillary zone electrophoresis (CZE) has not gained notable attention in research. Here, we present a heart-cut nanoLC-CZE-ESI-MS platform to analyse intact proteins. NanoLC and CZE-MS are coupled using a four-port valve with an internal nanoliter loop. NanoLC and CZE-MS conditions were optimised independently to find ideal conditions for the combined setup. The valve setup enables an ideal transfer efficiency between the dimensions while maintaining good separation conditions in both dimensions. Due to the higher loadability, the nanoLC-CZE-MS setup exhibits a 280-fold increased concentration sensitivity compared to CZE-MS. The platform was used to characterise intact human alpha-1-acid glycoprotein (AGP), an extremely heterogeneous N-glycosylated protein. With the nanoLC-CZE-MS approach, 368 glycoforms can be assigned at a concentration of 50 μg/mL as opposed to the assignment of only 186 glycoforms from 1 mg/mL by CZE-MS. Additionally, we demonstrate that glycosylation profiling is accessible for dried blood spot analysis (25 μg/mL AGP spiked), indicating the general applicability of our setup to biological matrices. The combination of high sensitivity and orthogonal selectivity in both dimensions makes the here-presented nanoLC-CZE-MS approach capable of detailed characterisation of intact proteins and their proteoforms from complex biological samples and in physiologically relevant concentrations.
Collapse
Affiliation(s)
- Alexander Stolz
- Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstr. 1, 73430, Aalen, Germany.
| |
Collapse
|
6
|
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta 2022; 1209:339447. [DOI: 10.1016/j.aca.2022.339447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
|
7
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi C. Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics. Curr Opin Biotechnol 2021; 71:182-190. [PMID: 34438131 DOI: 10.1016/j.copbio.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
N-glycosylation is of paramount importance for understanding the mechanisms of various human diseases and ensuring the safety and efficacy of biotherapeutics. Traditional glycan analysis techniques include LC-based separations and MALDI-TOF-MS identification. However, the current state-of-the-art methods lack throughput and structural information, include laborious sample preparation procedures and require large sample volumes. Capillary electrophoresis (CE) has long been used for the screening and reliable quantitation of glycans, but its applications have been limited. Because of its speed, sensitivity and complementarity with standard glycan analysis techniques, CE is currently emerging as one of the most versatile and adaptable methods for glycan analysis in both academia and industry. Herein, we review the latest advancements in CE-based applications to glycomics and glycoproteomics within both the biopharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
9
|
Gomes FP, Diedrich JK, Saviola AJ, Memili E, Moura AA, Yates JR. EThcD and 213 nm UVPD for Top-Down Analysis of Bovine Seminal Plasma Proteoforms on Electrophoretic and Chromatographic Time Frames. Anal Chem 2020; 92:2979-2987. [DOI: 10.1021/acs.analchem.9b03856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fabio P. Gomes
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anthony J. Saviola
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Erdogan Memili
- Mississippi State University, Starkville, Mississippi 39762, United States
| | | | - John R. Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
11
|
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt Chem 2019; 120:115644. [PMID: 31537953 PMCID: PMC6752746 DOI: 10.1016/j.trac.2019.115644] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Yang Z, Shen X, Chen D, Sun L. Improved Nanoflow RPLC-CZE-MS/MS System with High Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics. J Proteome Res 2019; 18:4046-4054. [PMID: 31610113 DOI: 10.1021/acs.jproteome.9b00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel mass spectrometry (MS)-based proteomic tools with extremely high sensitivity and high peak capacity are required for comprehensive characterization of protein molecules in mass-limited samples. We reported a nanoRPLC-CZE-MS/MS system for deep bottom-up proteomics of low micrograms of human cell samples in previous work. In this work, we improved the sensitivity of the nanoRPLC-CZE-MS/MS system drastically via employing bovine serum albumin (BSA)-treated sample vials, improving the nanoRPLC fraction collection procedure, and using a short capillary for fast CZE separation. The improved nanoRPLC-CZE produced a peak capacity of 8500 for peptide separation. The improved system identified 6500 proteins from a MCF7 proteome digest starting with only 500 ng of peptides using a Q-Exactive HF mass spectrometer. The system produced a comparable number of protein identifications (IDs) to our previous system and the two-dimensional (2D) nanoRPLC-MS/MS system developed by Mann's group with 10-fold and 4-fold less sample consumption, respectively. We coupled the single-spot solid phase sample preparation (SP3) method to the improved nanoRPLC-CZE-MS/MS for bottom-up proteomics of 5000 HEK293T cells, resulting in 3689 protein IDs with the consumption of a peptide amount that corresponded to only roughly 1000 cells.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Daoyang Chen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|