Fan K, Guo C, Liu N, Liang X, Jin K, Wang Z, Zhu C. Visualization and Analysis of Mapping Knowledge Domain of Fluid Flow Related to Microfluidic Chip.
ACS OMEGA 2024;
9:22801-22818. [PMID:
38826539 PMCID:
PMC11137721 DOI:
10.1021/acsomega.4c00966]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic chips are important tools to study the microscopic flow of fluid. To better understand the research clues and development trends related to microfluidic chips, a bibliometric analysis of microfluidic chips was conducted based on 1115 paper records retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer software were used to analyze the distribution of annual paper quantity, country/region distribution, subject distribution, institution distribution, major source journals distribution, highly cited papers, coauthor cooperation relationship, research knowledge domain, research focuses, and research frontiers, and a knowledge domain map was drawn. The results show that the number of papers published on microfluidic chips increased from 2010 to 2023, among which China, the United States, Iran, Canada, and Japan were the most active countries in this field. The United States was the most influential country. Nanoscience, energy, and chemical industry and multidisciplinary materials science were the main fields of microfluidic chip research. Lab on a Chip, Microfluidics and Nanofluidics, and Journal of Petroleum Science and Engineering were the main sources of papers published. The fabrication of chips, as well as their applications in porous media flow and multiphase flow, is the main knowledge domain of microfluidic chips. Micromodeling, fluid displacement, wettability, and multiphase flow are the research focuses in this field currently. The research frontiers in this field are enhanced oil recovery, interfacial tension, and stability.
Collapse