1
|
Dong R, Liu S, Li Y, Gao F, Gao K, Chen C, Qian Z, Li W, Yang Y. Revisiting hemodynamics and blood oxygenation in a microfluidic microvasculature replica. Microvasc Res 2024; 152:104640. [PMID: 38065353 DOI: 10.1016/j.mvr.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024]
Abstract
The complexity of microvascular circulation has led to the development of advanced imaging techniques and biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an in vitro model of microvasculature to replicate important geometric and functional features of in vivo perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O2) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal optical imaging (ISOI) to visualize full-field blood flow distributions and blood O2 profiles. By closely reproducing in vivo blood perfusion and oxygenation conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O2 transport parameters that are not directly measurable in traditional animal studies.
Collapse
Affiliation(s)
- Rui Dong
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sijia Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
2
|
Elnasharty MMM, Elwan AM. Dielectric investigation of irradiated RBCs and study the role of Moringa leaves extract against radiation damage. Appl Radiat Isot 2023; 196:110776. [PMID: 36947911 DOI: 10.1016/j.apradiso.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/05/2022] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
This research article introduces dielectric and thermodynamic state functions as physical markersdetecting both radiation effects and biological repairs to such damages. The red blood cells of rats were physically investigated in this work after whole body irradiation by 7 Gy of gamma rays and trying for reducing the damage effect of ionizing radiation by using the one of the best medicinal plants, Moringa leaves, which are rich with plentiful amounts of antioxidants and nutrients. The animals were divided into six groups; control, Moringa, irradiated, protected, treated, pro-treated. The physical parameters measured were impedance and DC conductivity then, relaxation time, activation energy and enthalpy change were calculated. Most of these parameters showed that the damage occurred in RBCs membrane due to ionizing radiation needs more than four weeks after irradiation to recover. As dipolar relaxation required much more time to occur and charge conduction were greatly reduced.
Collapse
Affiliation(s)
- Mohamed M M Elnasharty
- Microwave Physics and Dielectrics Dept., Physics Division, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt.
| | - Azhar M Elwan
- Dept., of Biochemistry, National Research Centre (NRC), 33 El Bohouth st., Dokki, P.O.12622, Giza, Egypt.
| |
Collapse
|
3
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Berest VP, Borikov OY, Kravchun PG, Leontieva FS, Dielievska VY. Determination of blood group antigens using electrophoresis of erythrocytes incubated with specific antibodies. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Frida Solomonivna Leontieva
- Department of Molecular and Medical Biophysics Sytenko Institute of Spine and Joint Pathology Kharkiv Ukraine
| | | |
Collapse
|
5
|
Caselli F, Reale R, De Ninno A, Spencer D, Morgan H, Bisegna P. Deciphering impedance cytometry signals with neural networks. LAB ON A CHIP 2022; 22:1714-1722. [PMID: 35353108 DOI: 10.1039/d2lc00028h] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-frequency impedance measurements provide data that allows full characterisation of cells, linking electrical phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals of coincident cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrate that neural networks can have an important role in impedance-based single-cell analysis.
Collapse
Affiliation(s)
- Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Riccardo Reale
- Center for Life Nano Science@Sapienza, Italian Institute of Technology (IIT), Rome, Italy
| | - Adele De Ninno
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Daniel Spencer
- School of Electronics and Computing Science, and, Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| | - Hywel Morgan
- School of Electronics and Computing Science, and, Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
6
|
Su L, Xu SZ, Huang YX, Wu Q, Hou ZW. Developing a near-infrared spectroscopy and microwave-induced thermoacoustic tomography-based dual-modality imaging system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124901. [PMID: 34972469 DOI: 10.1063/5.0067878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Near-infrared spectroscopy (NIRS) techniques can provide noninvasive in vivo hemoglobin oxygenation information but suffer from relatively low resolution in biological tissue imaging. Microwave-induced thermoacoustic tomography (TAT) can produce high-resolution images of the biological tissue anatomy but offer limited physiological information of samples because of the single species of the chromophore it maps. To overcome these drawbacks and take advantage of the merits of the two independent techniques, we built a dual-modality system by combining a NIRS system and a TAT system to image biological tissues. A series of phantom trials were carried out to demonstrate the performance of the new system. The spatial resolution is about 1 mm, with a penetration depth of at least 17.5 mm in the human subject. A cohort of five healthy subjects was recruited to conduct real-time forearm venous and arterial cuff occlusion experiments. Numerous results showed that this dual-modality system could measure oxygen metabolism and simultaneously provide anatomical structure changes of biological tissues. We also found that although the hemoglobin concentration varied consistently with many other published papers, the TAT signal intensity of veins showed an opposite variation tendency in the venous occlusion stage compared with other existing work. A detailed explanation is given to account for the discrepancy, thus, providing another possibility for the forearm experiments using TAT. Furthermore, based on the multiple types of information afforded by this dual-modality system, a pilot clinical application for the diagnosis of anemia is discussed.
Collapse
Affiliation(s)
- L Su
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, 611731 Chengdu, China
| | - S Z Xu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, 611731 Chengdu, China
| | - Y X Huang
- School of Physics, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, 611731 Chengdu, China
| | - Q Wu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, 611731 Chengdu, China
| | - Z W Hou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, 611731 Chengdu, China
| |
Collapse
|
7
|
Yang B, Xu J, Hu S, You B, Ma Q. Effects of lead exposure on blood electrical impedance spectroscopy of mice. Biomed Eng Online 2021; 20:99. [PMID: 34620171 PMCID: PMC8499524 DOI: 10.1186/s12938-021-00933-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Lead is a nonessential heavy metal, which can inhibit heme synthesis and has significant cytotoxic effects. Nevertheless, its effect on the electrical properties of red blood cells (RBCs) remains unclear. Consequently, this study aimed to investigate the electrical properties and the electrophysiological mechanism of lead exposure in mouse blood using Electrical Impedance Spectroscopy (EIS) in 0.01–100 MHz frequency range. Data characteristic of the impedance spectrum, Bodes plot, Nyquist plot and Nichols plot, and Constant Phase Element (CPE) equivalent circuit model were used to explicitly analyze the differences in amplitude–frequency, phase–frequency, and the frequency characteristics of blood in electrical impedance properties. Results Compared with the healthy blood in control mice, the changes in blood exposed to lead were as follows: (i) the hematocrit decreased; (ii) the amplitude–frequency and phase–frequency characteristics of electrical impedance decreased; (iii) the characteristic frequencies (f0) were significantly increased; (iv) the electrical impedance of plasma, erythrocyte membrane, and hemoglobin decreased, while the conductivity increased. (v) The pseudo-capacitance of cell membrane (CPE_Tm) and the intracellular pseudo-capacitance (CPE-Ti) were decreased. Conclusions Therefore, EIS can be used as an effective method to monitor blood and RBC abnormalities caused by lead exposure. The electrical properties of the cells can be applied as an important observation in the evaluation of the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Binying Yang
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shao Hu
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China
| | - Boning You
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China
| | - Qing Ma
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
8
|
Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. MICROMACHINES 2021; 12:mi12091057. [PMID: 34577700 PMCID: PMC8472004 DOI: 10.3390/mi12091057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Hydrogels are the ideal materials in the development of implanted bioactive neural interfaces because of the nerve tissue-mimicked physical and biological properties that can enhance neural interfacing compatibility. However, the integration of hydrogels and rigid/dehydrated electronic microstructure is challenging due to the non-reliable interfacial bonding, whereas hydrogels are not compatible with most conditions required for the micromachined fabrication process. Herein, we propose a new enzyme-mediated transfer printing process to design an adhesive biological hydrogel neural interface. The donor substrate was fabricated via photo-crosslinking of gelatin methacryloyl (GelMA) containing various conductive nanoparticles (NPs), including Ag nanowires (NWs), Pt NWs, and PEDOT:PSS, to form a stretchable conductive bioelectrode, called NP-doped GelMA. On the other hand, a receiver substrate composed of microbial transglutaminase-incorporated gelatin (mTG-Gln) enabled simultaneous temporally controlled gelation and covalent bond-enhanced adhesion to achieve one-step transfer printing of the prefabricated NP-doped GelMA features. The integrated hydrogel microelectrode arrays (MEA) were adhesive, and mechanically/structurally bio-compliant with stable conductivity. The devices were structurally stable in moisture to support the growth of neuronal cells. Despite that the introduction of AgNW and PEDOT:PSS NPs in the hydrogels needed further study to avoid cell toxicity, the PtNW-doped GelMA exhibited a comparable live cell density. This Gln-based MEA is expected to be the next-generation bioactive neural interface.
Collapse
|
9
|
Energy absorption of human red blood cells and conductivity of the cytoplasm influenced by temperature. Biophys Chem 2021; 273:106578. [PMID: 33774523 DOI: 10.1016/j.bpc.2021.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
The energy absorbed into tissues is known as the specific energy absorption (SAR) which is dependent on conductivity of the tissue. We calculated cytoplasmic conductivity of human red blood cell (HRBC) using the intracellular ionic concentrations and the Debye-Hückel-Onsager relation. The overall concentration is determined by cell volume and cell water content. The calculated HRBC conductivity at 25 o C was σc,25 = 0.5566 ± 0.0146 S m-1, ±SE). It is exponentially related to temperature: Q10 ≈ 1.866. At 37 o C, the calculated SAR value is 1.6 W kg-1 using a linear temperature compensation of conductivity. However, if using a biologically realistic non-linear temperature compensated conductivity, the SAR is ≈ 2.62 ± 0.05 W kg-1. The relationship between SAR and temperature increase is not straightforward. Since there is a wide variance in cellular ionic and water perfusion rates more tissue-specific SAR limits which consider temperature-related factors would be valuable.
Collapse
|