1
|
Fu X, Hafza N, Götz F, Lämmerhofer M. Profiling of branched chain and straight chain saturated fatty acids by ultra-high performance liquid chromatography-mass spectrometry. J Chromatogr A 2023; 1703:464111. [PMID: 37262934 DOI: 10.1016/j.chroma.2023.464111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Branched chain fatty acids (BCFAs) are one of the important sub categories of fatty acids (FAs) which have unique functions in nature. They are commonly analyzed by GC-MS after derivatization to methyl esters (FAMEs). On the other hand, there is a lack of isomer-selective LC-MS methods which allow the distinction of different isomers with wide coverage of carbon chain length. In this work, a systematic retention and isomer selectivity study on seven commercially available UHPLC columns (six polysaccharide columns Chiralpak IA-U, IB-U, IC-U, ID-U, IG-U and IH-U; one Acquity UPLC CSH C18 column) was performed. Various experimental factors were evaluated including column temperatures, gradient profiles and flow rates to elucidate their effects on the separation ability of homologous series of BCFAs with distinct chain lengths, different branching types and branching positions. In general, IG-U outperformed the other columns in terms of isomer selectivity especially for the short and medium-chain BCFA isomers while RP C18 showed good potential in terms of selectivity for long-chain BCFA isomers. Furthermore, after the evaluation of the chromatographic retention pattern on the various columns and method optimization, we report a methodology for untargeted isomer-selective BCFA profiling without precolumn derivatization with UHPLC-ESI-MS/MS by quadrupole-time-of-flight instrument with SWATH acquisition. The best method provides selectivity for constitutional isomers of BCFAs covering distinct chain length (C5-C20) with different branching types (methyl or ethyl) and branching positions (2Me, 3Me, 4Me, 6Me, anteiso and iso-BCFAs) with an optimized LC condition on Acquity UPLC CSH C18 column. Finally, the optimized method was applied for the BCFAs profiling in lipid extracts of Staphylococcus aureus samples. Besides, pooled human platelets and pooled human plasma were evaluated as mammalian samples for presence of BCFAs as well. The new method showed strong potential for BCFA profiling in bacterial samples including different isomers anteiso and iso-BCFAs, which could be a useful tool for related subdisciplines in metabolomics and lipidomics in particular in combination with electron-activated dissociation MS. Compared to GC, the presented isomer selective LC methods can be also of great utility for preparative purposes. Equivalent (carbon) chain length numbers were calculated for RP18 and Chiralpak IG-U and compared to those of FAMEs obtained by GC.
Collapse
Affiliation(s)
- Xiaoqing Fu
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Nourhane Hafza
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Friedrich Götz
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Řezanka T, Lukavský J, Rozmoš M, Nedbalová L, Jansa J. Separation of triacylglycerols containing positional isomers of hexadecenoic acids by enantiomeric liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123401. [PMID: 35921696 DOI: 10.1016/j.jchromb.2022.123401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Triacylglycerols (TAGs) containing positional isomers of hypogeic (Hy), palmitoleic (Po), and palmitvaccenic (Pv) acids from three microorganisms (top-fermenting brewer's yeast Saccharomyces cerevisiae, green alga Coccomyxa elongata, and arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis) were analyzed. Dozens of regioisomers and enantiomers of TAGs containing one, two or three hexadecenoic acids have been identified by means of reversed phase chromatography/mass spectrometry (RP-HPLC/MS). The regioisomers of TAGs containing two palmitic acids and any hexadecenoic acid were separated. Analysis of regioisomers of TAGs having one Pv residue showed that asymmetric molecular species such as PvPP or PPPv were dominant in Rhizophagus. TAGs were also analyzed on a chiral phase column and nine molecular species of TAGs containing two palmitic and any of three hexadecenoic acids were separated and identified. In the case of TAGs containing one palmitic and two hexadecenoic acids, the separation was successful only if the hexadecenoic acids were identical. Separation of TAGs containing three hexadecenoic acids was successful only if all three hexadecenoic acids were identical. Regardless of the type of TAG, it was found that TAGs in the AM fungus and containing palmitvaccenic acid bound at the sn-1 position of the glycerol backbone were dominant, suggesting similarity in the biosynthesis of the different TAGs. The covalent adduct chemical ionization method was used for identification of TAGs as adduct with (1-methyleneimino)-1-ethenyl ion, which reacted with double bond of the unsaturated fatty acid. Tandem MS thus makes it possible to identify TAGs containing various hexadecenoic acids.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Martin Rozmoš
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
3
|
Structural Characterization of Mono- and Dimethylphosphatidylethanolamines from Various Organisms Using a Complex Analytical Strategy Including Chiral Chromatography. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two minor phospholipids, i.e., mono- and/or dimethylphosphatidylethanolamines, are widespread in many organisms, from bacteria to higher plants and animals. A molecular mixture of methyl-PE and dimethyl-PE was obtained from total lipids by liquid chromatography and further identified by mass spectrometry. Total methyl-PE and dimethyl-PE were cleaved by phospholipase C, and the resulting diacylglycerols, in the form of acetyl derivatives, were separated into alkyl-acyl, alkenyl-acyl, and diacylglycerols. Reversed-phase LC/MS allowed dozens of molecular species to be identified and further analyzed. This was performed on a chiral column, and identification by tandem positive ESI revealed that diacyl derivatives from all four bacteria were mixtures of both R and S enantiomers. The same applied to alkenyl-acyl derivatives of anaerobic bacteria. Analysis thus confirmed that some bacteria biosynthesize phospholipids having both sn-glycerol-3-phosphate and sn-glycerol-1-phosphate as precursors. These findings were further supported by data already published in GenBank. The use of chiral chromatography made it possible to prove that both enantiomers of glycerol phosphate of some molecular species of mono- and dimethylphosphatidylethanolamines are present. The result of the analysis can be interpreted that the cultured bacteria do not have homochiral membranes but, on the contrary, have an asymmetric, i.e., heterochiral membranes.
Collapse
|
4
|
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented.
Collapse
|
5
|
Vítová M, Palyzová A, Řezanka T. Plasmalogens - Ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Prog Lipid Res 2021; 83:101111. [PMID: 34147515 DOI: 10.1016/j.plipres.2021.101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Plasmalogens are a group of lipids mainly found in the cell membranes. They occur in anaerobic bacteria and in some protozoa, invertebrates and vertebrates, including humans. Their occurrence in plants and fungi is controversial. They can protect cells from damage by reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. Biosynthesis in anaerobic and aerobic organisms occurs by different pathways, and the main biosynthetic pathway in anaerobic bacteria was clarified only this year (2021). Many different analytical techniques have been used for plasmalogen analysis, some of which are detailed below. These can be divided into two groups: shotgun lipidomics, or electrospray ionization mass spectrometry in combination with high performance liquid chromatography (LC-MS). The advantages and limitations of both techniques are discussed here, using examples from anaerobic bacteria to specialized mammalian (human) organs.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Vítová M, Stránská M, Palyzová A, Řezanka T. Detailed structural characterization of cardiolipins from various biological sources using a complex analytical strategy comprising fractionation, hydrolysis and chiral chromatography. J Chromatogr A 2021; 1648:462185. [PMID: 33984647 DOI: 10.1016/j.chroma.2021.462185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Cardiolipins (1,3-bis(sn-3'-phosphatidyl)-sn-glycerol) (CLs) are widespread in many organisms, from bacteria to higher green plants and mammals. CLs were observed in Gram-positive bacterium of the genus Kocuria, brewer's yeast Saccharomyces, the green alga Chlamydomonas, spinach and beef heart. A mixture of molecular species of CLs was obtained from total lipids by hydrophilic interaction liquid chromatography (HILIC), and these were further separated and identified by reversed phase LC/MS with negative tandem electrospray ionization. The majority of CLs molecular species from each organism were cleaved using phospholipase C from Bacillus cereus. This phospholipase cleaves CLs into 1,2-diglycerols and phosphatidylglycerol 3-phosphates, which were then separated. After CLs cleavage, diacylglycerols such as sn-1,2-diacyl-3-acetyl-glycerols (i.e., triacylglycerols) were separated and identified by chiral chromatography/MS-positive tandem ESI. Significant differences in the composition of the molecular species between the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties of CLs were found in all organisms tested. Molecular species of CLs that contained four different fatty acids were identified in all five samples, and CLs containing very long chain fatty acids were identified in yeast. In addition, CLs containing both enantiomers (at the sn-2 carbon) were present in the bacterium tested. These findings were further supported by data already published in GenBank where, in the same family - Micrococcaceae - both enzymes responsible for chirality in the sn-2 position, glycerol-3-phosphate and glycerol-1-phosphate dehydrogenases, were present.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Milena Stránská
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3, 166 28 Prague, Czech Republic
| | - Andrea Palyzová
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|