1
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
2
|
Fiserova B, Minarik M, Nahunek M, Kysilka R, Minarik M. Improvement of oligonucleotide separation using a repetto high-performance liquid chromatography recycling approach. J Sep Sci 2024; 47:e2400252. [PMID: 38822226 DOI: 10.1002/jssc.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
A new approach for the improvement of separation of oligonucleotides by recycling ion-pairing chromatography is described. In the so-called repetto process, segments of separated compounds are sequentially returned to the inlet for multiple passages through the column without a need to pass a pump and with the possibility of detecting the level of separation between individual passages. Unlike in the recently described twin-column recycle approach in which eluents are repeatedly transferred between two separation columns, with the repetto method a single column is sufficient, and the detector is not exposed to high back pressure. The repetto principle was used for the separation of synthetic oligonucleotides, resulting in a multi-fold improvement in single nt resolution of long (> 50 nt) synthetic oligonucleotide fragments with high gas chromatography (guanine-cytosine) content > 40% and their separation from impurities of the original synthesis.
Collapse
Affiliation(s)
- Barbora Fiserova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | | | - Marek Minarik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Watrex Praha s.r.o., Prague, Czech Republic
| |
Collapse
|
3
|
Javidanbardan A, Messerian KO, Zydney AL. Membrane technology for the purification of RNA and DNA therapeutics. Trends Biotechnol 2024; 42:714-727. [PMID: 38212210 DOI: 10.1016/j.tibtech.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Nucleic acid therapeutics have the potential to revolutionize the biopharmaceutical industry, providing highly effective vaccines and novel treatments for cancers and genetic disorders. The successful commercialization of these therapeutics will require development of manufacturing strategies specifically tailored to the purification of nucleic acids. Membrane technologies already play a critical role in the downstream processing of nucleic acid therapeutics, ranging from clarification to concentration to selective purification. This review provides an overview of how membrane systems are currently used for nucleic acid purification, while highlighting areas of future need and opportunity, including adoption of membranes in continuous bioprocessing.
Collapse
Affiliation(s)
- Amin Javidanbardan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevork Oliver Messerian
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Nielsen JB, Holladay JD, Burningham AJ, Rapier-Sharman N, Ramsey JS, Skaggs TB, Nordin GP, Pickett BE, Woolley AT. Monolithic affinity columns in 3D printed microfluidics for chikungunya RNA detection. Anal Bioanal Chem 2023; 415:7057-7065. [PMID: 37801120 PMCID: PMC10840819 DOI: 10.1007/s00216-023-04971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Mosquito-borne pathogens plague much of the world, yet rapid and simple diagnosis is not available for many affected patients. Using a custom stereolithography 3D printer, we created microfluidic devices with affinity monoliths that could retain, noncovalently attach a fluorescent tag, and detect oligonucleotide and viral RNA. We optimized the fluorescent binding and sample load times using an oligonucleotide sequence from chikungunya virus (CHIKV). We also tested the specificity of CHIKV capture relative to genetically similar Sindbis virus. Moreover, viral RNA from both viruses was flowed through capture columns to study the efficiency and specificity of the column for viral CHIKV. We detected ~107 loaded viral genome copies, which was similar to levels in clinical samples during acute infection. These results show considerable promise for development of this platform into a rapid mosquito-borne viral pathogen detection system.
Collapse
Affiliation(s)
- Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - James D Holladay
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Addalyn J Burningham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Joshua S Ramsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Timothy B Skaggs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
5
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|