Keremane KS, Planchat A, Pellegrin Y, Jacquemin D, Odobel F, Vasudeva Adhikari A. Push-Pull Phenoxazine-Based Sensitizers for p-Type DSSCs: Effect of Acceptor Units on Photovoltaic Performance.
CHEMSUSCHEM 2022;
15:e202200520. [PMID:
35691936 DOI:
10.1002/cssc.202200520]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Finding new efficient p-type sensitizers for NiO photocathodes is a great challenge for the development of promising low-cost tandem dye-sensitized solar cells (DSSCs). Now, the focus of researchers investigating these cells has been to create high-performance p-type systems. With this intention, herein, the design and synthesis of six new phenoxazine-based donor-acceptor (D-A)-configured organic dyes PO1-6 was reported, comprising different acceptor moieties specially designed for the sensitization of mesoporous p-type semiconductor NiO for the construction of p-type DSSCs (p-DSSCs). This work includes structural, photophysical, thermal, electrochemical, theoretical, and photoelectrochemical studies of these dyes, including evaluation of their structure-property relationships. The optical studies revealed that PO1-6 displayed adequate absorption and emission features in the range of 480-550 and 560-650 nm, respectively, with a bandgap in the order of 2.05-2.40 eV, and their thermodynamic parameters favored an efficient interfacial charge transfer involving NiO. Among the six new dyes, the device based on sensitizer PO2 carrying electron-withdrawing 1,3-diethyl-2-thiobarbituric acid achieved the highest power conversion efficiency of 0.031 % (short-circuit current density=0.89 mA cm-2 , open-circuit voltage=101 mV, and fill factor=35 %). Conclusively, the study furnishes an understanding of the intricacies involved in the structural modification of phenoxazine-based sensitizers to further ameliorate the performance of the p-type DSSCs.
Collapse