1
|
Zhang J, Yuan YX, Yan JW, Mao BW, Yao JL, Tian ZQ. Hydrophilicity Dependent Distribution of Water at Ionic Liquids/Metal Interface Monitored by Electrochemical SERS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50054-50060. [PMID: 39283756 DOI: 10.1021/acsami.4c11613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The understanding of the interfacial processes is critically important for extending the practical application of ionic liquids, particularly for the role of interfacial water. In the electrochemical system based on ionic liquid electrolytes, small amounts of water at the interface generate a significant change in the electrochemical behaviors of ionic liquids. Therefore, the investigation on the interfacial behavior of water is highly desired in ionic liquids with different anions, water content, and hydrophilicity. Herein, based on the probe strategy, in situ surface enhanced Raman spectroscopy (SERS) combined with electrochemical control (EC-SERS) was developed to investigate the influence of hydrophilicity/hydrophobicity of ionic liquids on the interfacial water. The water-sensitive transformation reaction of 4,4'-dimercaptoazobenzene (DMAB) to para-aminothiophenol (PATP) was employed as a probe reaction for investigating the behavior of interfacial water. The changes of relative SERS intensities of DMAB to PATP served as an indication of the quantity variation of interfacial water. The results show that the transformation reaction efficiencies were critically dependent on the additional water contents, potential, and hydrophilicity of ionic liquids. With a very low molar fraction of additional water (Xw = 0.01), transformation efficiency of DMAB (the amount of interfacial water) followed the sequence of [BMIm]BF4 < [BMIm]PF6 < [BMIm]Tf2N. It was in agreement with the hydrophobicity order of the ionic liquids. With the increase in additional water content, the potential for the full transformation was positively moved, and the efficiency increased significantly. The stronger hydrophobicity allowed more water molecules to migrate to the interface, which was attributed to the difference in interactions between water and the anions of ionic liquids. It demonstrated that the small amount of water tended to gather at the interface in hydrophobic ionic liquids. Compared to traditional cyclic voltammetry, the EC-SERS technique combined with probe reactions is more sensitive to interfacial water. It is anticipated to develop as a promising tool for the investigating water-related issues at interfaces and to provide guidance to screen ionic liquids for practical application.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Ya-Xian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Tan Z, Li K, Gu Y, Nan Z, Wang W, Sun L, Mao B, Yan J. Unconventional Electrochemical Behaviors of Cu Underpotential Deposition in a Chloride-Based Deep Eutectic Solvent: High Underpotential Shift and Low Coverage. Anal Chem 2023; 95:6458-6466. [PMID: 37027511 DOI: 10.1021/acs.analchem.3c00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The (5 × 5) Moiré pattern resulting from coadsorption of Cu atoms and chloride ions on the Au(111) electrode is one of the most classical structures for underpotential deposition (UPD) in electrochemical surface science. Although two models have been proposed to describe the pattern, the details of the structure remain ambiguous and controversial, leading to a question that remains to be answered. In this work, we investigate the UPD behaviors of Cu on the Au(111) electrode in a chloride-based deep eutectic solvent ethaline by in situ scanning tunneling microscopy (STM). Benefiting from the properties of the ultraconcentrated electrolyte, we directly image not only Cu but also Cl adlayers by finely tuning tunneling conditions. The structure is unambiguously determined for both Cu and Cl adlayers, where an incommensurate Cu layer is adsorbed on the Au(111) surface with a Cu coverage of 0.64, while the Cl coverage is 0.32 (only half of the expected value); i.e., the atomic arrangement of the observed (5 × 5) Moiré pattern in ethaline matches neither of the models proposed in the literature. Meanwhile, STM results confirm the origin of the cathodic peak in the cyclic voltammogram, which indicates that the underpotential shift of Cu UPD in ethaline indeed increases by ca. 0.40 V compared to its counterpart in a sulfuric acid solution, resulting in a significant deviation from the linear relation between the underpotential shift and the difference in work functions proposed in the literature. The unconventional electrochemical behaviors of Cu UPD reveal the specialty of both the bulk and the interface in the chloride-based deep eutectic solvent.
Collapse
Affiliation(s)
- Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Kaixuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Ziang Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Weiwei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Stephens NM, Smith EA. Structure of Deep Eutectic Solvents (DESs): What We Know, What We Want to Know, and Why We Need to Know It. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14017-14024. [PMID: 36346803 DOI: 10.1021/acs.langmuir.2c02116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|