1
|
Zhang C, Sharma S, Ma C, Zeng AP. Strain evolution and novel downstream processing with integrated catalysis enable highly efficient co-production of 1,3-Propanediol and organic acid esters from crude glycerol. Biotechnol Bioeng 2022; 119:1450-1466. [PMID: 35234295 DOI: 10.1002/bit.28070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
Abstract
Bioconversion of natural microorganisms generally results in a mixture of various compounds. Downstream processing (DSP) which only targets a single product often lacks economic competitiveness due to incomplete use of raw material and high cost of waste treatment for by-products. Here, we show with the efficient microbial conversion of crude glycerol by an artificially evolved strain and how a catalytic conversion strategy can improve the total products yield and process economy of the DSP. Specifically, Clostridium pasteurianum was first adapted to increased concentration of crude glycerol in a novel automatic laboratory evolution system. At m3 scale bioreactor the strain achieved a simultaneous production of 1,3-propanediol (PDO), acetic and butyric acids at 81.21, 18.72 and 11.09 g/L within only 19 h, respectively, representing the most efficient fermentation of crude glycerol to targeted products. A heterogeneous catalytic step was developed and integrated into the DSP process to obtain high-value methyl esters from acetic and butyric acids at high yields. The co-production of the esters also greatly simplified the recovery of PDO. For example, a cosmetic grade PDO (96% PDO) was easily obtained by a simple single-stage distillation process (with an overall yield more than 77%). This integrated approach provides an industrially attractive route for the simultaneous production of three appealing products from the crude glycerol fermentation broth, which greatly improve the process economy and ecology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chijian Zhang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.,Hua An Tang Biotech Group Co., Ltd, Guangzhou, China
| | - Shubhang Sharma
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Chengwei Ma
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
2
|
Wang Q, Al Makishah NH, Li Q, Li Y, Liu W, Sun X, Wen Z, Yang S. Developing Clostridia as Cell Factories for Short- and Medium-Chain Ester Production. Front Bioeng Biotechnol 2021; 9:661694. [PMID: 34164382 PMCID: PMC8215697 DOI: 10.3389/fbioe.2021.661694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Short- and medium-chain volatile esters with flavors and fruity fragrances, such as ethyl acetate, butyl acetate, and butyl butyrate, are usually value-added in brewing, food, and pharmacy. The esters can be naturally produced by some microorganisms. As ester-forming reactions are increasingly deeply understood, it is possible to produce esters in non-natural but more potential hosts. Clostridia are a group of important industrial microorganisms since they can produce a variety of volatile organic acids and alcohols with high titers, especially butanol and butyric acid through the CoA-dependent carbon chain elongation pathway. This implies sufficient supplies of acyl-CoA, organic acids, and alcohols in cells, which are precursors for ester production. Besides, some Clostridia could utilize lignocellulosic biomass, industrial off-gas, or crude glycerol to produce other branched or straight-chain alcohols and acids. Therefore, Clostridia offer great potential to be engineered to produce short- and medium-chain volatile esters. In the review, the efforts to produce esters from Clostridia via in vitro lipase-mediated catalysis and in vivo alcohol acyltransferase (AAT)-mediated reaction are comprehensively revisited. Besides, the advantageous characteristics of several Clostridia and clostridial consortia for bio-ester production and the driving force of synthetic biology to clostridial chassis development are also discussed. It is believed that synthetic biotechnology should enable the future development of more effective Clostridia for ester production.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Naief H Al Makishah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Li Z, Wu Z, Cen X, Liu Y, Zhang Y, Liu D, Chen Z. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate. ACS Synth Biol 2021; 10:478-486. [PMID: 33625207 DOI: 10.1021/acssynbio.0c00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1,3-Propanediol (1,3-PDO) is a promising platform chemical used to manufacture various polyesters, polyethers, and polyurethanes. Microbial production of 1,3-PDO using non-natural producers often requires adding expensive cofactors such as vitamin B12, which increases the whole production cost. In this study, we proposed and engineered a non-natural 1,3-PDO synthetic pathway derived from acetyl-CoA, enabling efficient accumulation of 1,3-PDO in Escherichia coli without adding expensive cofactors. This functional pathway was established by introducing the malonyl-CoA-dependent 3-hydroxypropionic acid (3-HP) module and screening the key enzymes to convert 3-HP to 1,3-PDO. The best engineered strain can produce 2.93 g/L 1,3-PDO with a yield of 0.35 mol/mol glucose in shake flask cultivation (and 7.98 g/L in fed-batch fermentation), which is significantly higher than previous reports based on homoserine- or malate-derived non-natural pathways. We also demonstrated for the first time the feasibility of producing 1,3-PDO from diverse carbohydrates including xylose, glycerol, and acetate based on the same pathway. Thus, this study provides an alternative route for 1,3-PDO production.
Collapse
Affiliation(s)
- Zihua Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ziyi Wu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Arbter P, Sabra W, Utesch T, Hong Y, Zeng A. Metabolomic and kinetic investigations on the electricity-aided production of butanol by Clostridium pasteurianum strains. Eng Life Sci 2021; 21:181-195. [PMID: 33716617 PMCID: PMC7923553 DOI: 10.1002/elsc.202000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
In this contribution, we studied the effect of electro-fermentation on the butanol production of Clostridium pasteurianum strains by a targeted metabolomics approach. Two strains were examined: an electrocompetent wild type strain (R525) and a mutant strain (dhaB mutant) lacking formation of 1,3-propanediol (PDO). The dhaB-negative strain was able to grow on glycerol without formation of PDO, but displayed a high initial intracellular NADH/NAD ratio which was lowered subsequently by upregulation of the butanol production pathway. Both strains showed a 3-5 fold increase of the intracellular NADH/NAD ratio when exposed to cathodic current in a bioelectrochemical system (BES). This drove an activation of the butanol pathway and resulted in a higher molar butanol to PDO ratio for the R525 strain. Nonetheless, macroscopic electron balances suggest that no significant amount of electrons derived from the BES was harvested by the cells. Overall, this work points out that electro-fermentation can be used to trigger metabolic pathways and improve product formation, even when the used microbe cannot be considered electroactive. Accordingly, further studies are required to unveil the underlying (regulatory) mechanisms.
Collapse
Affiliation(s)
- Philipp Arbter
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Yaeseong Hong
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
5
|
Zeng AP. New bioproduction systems for chemicals and fuels: Needs and new development. Biotechnol Adv 2019; 37:508-518. [DOI: 10.1016/j.biotechadv.2019.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/17/2022]
|
6
|
Schmitz R, Sabra W, Arbter P, Hong Y, Utesch T, Zeng AP. Improved electrocompetence and metabolic engineering of Clostridium pasteurianum reveals a new regulation pattern of glycerol fermentation. Eng Life Sci 2018; 19:412-422. [PMID: 32625019 DOI: 10.1002/elsc.201800118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/06/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
Clostridium pasteurianum produces industrially valuable chemicals such as n-butanol and 1,3-propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3-propanediol-deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl-CoA to butyryl-CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl-CoA to butyryl-CoA and butanol, indicating a new, 1,3-propanediol-independent pattern of glycerol fermentation in Clostridium pasteurianum.
Collapse
Affiliation(s)
- Rebekka Schmitz
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| | - Philipp Arbter
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| | - Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology Hamburg Germany
| |
Collapse
|
7
|
Groeger C, Wang W, Sabra W, Utesch T, Zeng AP. Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability. Microb Cell Fact 2017; 16:64. [PMID: 28424096 PMCID: PMC5395762 DOI: 10.1186/s12934-017-0678-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clostridium pasteurianum as an emerging new microbial cell factory can produce both n-butanol (BuOH) and 1,3-propanediol (1,3-PDO), and the pattern of product formation changes significantly with the composition of the culture medium. Among others iron content in the medium was shown to strongly affect the products selectivity. However, the mechanism behind this metabolic regulation is still unclear. For a better understanding of such metabolic regulation and for process optimization, we carried out fermentation experiments under either iron excess or iron limitation conditions, and performed metabolic, stoichiometric and proteomic analyses. RESULTS 1,3-PDO is most effectively produced under iron limited condition (Fe-), whereas 1,3-PDO and BuOH were both produced under iron rich condition (Fe+). With increased iron availability the BuOH/1,3-PDO ratio increased significantly from 0.27 mol/mol (at Fe-) to 1.4 mol/mol (at Fe+). Additionally, hydrogen production was enhanced significantly under Fe+ condition. Proteomic analysis revealed differentiated expression of many proteins including several ones of the central carbon metabolic pathway. Among others, pyruvate: ferredoxin oxidoreductase, hydrogenases, and several electron transfer flavoproteins was found to be strongly up-regulated under Fe+ condition, pointing to their strong involvement in the regeneration of the oxidized form of ferredoxin, and consequently their influences on the product selectivity in C. pasteurianum. Of particular significance is the finding that H2 formation in C. pasteurianum is coupled to the ferredoxin-dependent butyryl-CoA dehydrogenase catalyzed reaction, which significantly affects the redox balance and thus the product selectivity. CONCLUSIONS The metabolic, stoichiometric and proteomic results clearly show the key roles of hydrogenases and ferredoxins dependent reactions in determining the internal redox balance and hence product selectivity. Not only the NADH pool but also the regulation of the ferredoxin pool could explain such product variation under different iron conditions.
Collapse
Affiliation(s)
- Christin Groeger
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| |
Collapse
|