1
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
2
|
Li J, Lei Y, Pu X, Liu Y, Mei Z, Tang Y. Improving biomethane fermentation through trace elements-driven microbial changes: Different effects of Fe0 combined with Co/Ni. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Sarkar O, Rova U, Christakopoulos P, Matsakas L. Effect of metals on the regulation of acidogenic metabolism enhancing biohydrogen and carboxylic acids production from brewery spent grains: Microbial dynamics and biochemical analysis. Eng Life Sci 2022; 22:650-661. [PMID: 36247830 PMCID: PMC9550736 DOI: 10.1002/elsc.202200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The present study reports the mixed culture acidogenic production of biohydrogen and carboxylic acids (CA) from brewery spent grains (BSG) in the presence of high concentrations of cobalt, iron, nickel, and zinc. The metals enhanced biohydrogen output by 2.39 times along with CA biosynthesis by 1.73 times. Cobalt and iron promoted the acetate and butyrate pathways, leading to the accumulation of 5.14 gCOD/L of acetic and 11.36 gCOD/L of butyric acid. The production of solvents (ethanol + butanol) was higher with zinc (4.68 gCOD/L) and cobalt (4.45 gCOD/L). A combination of all four metals further enhanced CA accumulation to 42.98 gCOD/L, thus surpassing the benefits accrued from supplementation with individual metals. Additionally, 0.36 and 0.31 mol green ammonium were obtained from protein-rich brewery spent grain upon supplementation with iron and cobalt, respectively. Metagenomic analysis revealed the high relative abundance of Firmicutes (>90%), of which 85.02% were Clostridium, in mixed metal-containing reactors. Finally, a significant correlation of dehydrogenase activity with CA and biohydrogen evolution was observed upon metal addition.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of Civil, Environmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Ulrika Rova
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of Civil, Environmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Paul Christakopoulos
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of Civil, Environmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Leonidas Matsakas
- Biochemical Process EngineeringDivision of Chemical EngineeringDepartment of Civil, Environmental, and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| |
Collapse
|
4
|
Laiq Ur Rehman M, Iqbal A, Chang CC, Li W, Ju M. Anaerobic digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1253-1271. [PMID: 31529649 DOI: 10.1002/wer.1219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Worldwide waste generation has become a topic of interest since the accumulation of this waste has prompted environmental hazards. Among which, anaerobic digestion provides green and efficient alternate solution for removal of toxic waste and energy production. Therefore, this review emphasizes on the recent data published in 2018 on topics related to anaerobic process, enhancement of biogas production, and fermentation efficiency. Furthermore, more focus was made on the factors influencing anaerobic digestion and the effect of trace elements as ionic salts as well as nanoparticles on overall biogas production, respectively. PRACTITIONER POINTS: Anaerobic digestion provide green and efficient alternate solution to deal with. This review focused on the conditions related to anaerobic process to improve biogas production and fermentation efficiency. The trace elements were focused on how to influence biogas production during anaerobic digestion.
Collapse
Affiliation(s)
- Mian Laiq Ur Rehman
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Chein-Chi Chang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Weizun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Introducing Temperature as Variable Parameter into Kinetic Models for Anaerobic Fermentation of Coffee Husk, Pulp and Mucilage. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary coffee processing generates important by-products—the pulp, husk and mucilage—while producing the green coffee beans. These by-products represent a large quantity of biomass and might create an adverse impact on environment if they are left to uncontrolled natural decay. In this study, the bio-methane formation potential of coffee husk, pulp and mucilage was examined in batch assays performed at 21 °C, 30 °C and 37 °C. The mean specific methane yield (SMY) from husk, pulp, and mucilage were 159.4, 244.7 and 294.5 L kg−1 volatile solids(VS), respectively, for a fermentation temperature of 37 °C; 156.8, 234.8 and 287.1 L kg−1 VS, respectively, for 30 °C; and 139.9, 196.2 and 255.9 L kg−1 VS, respectively, for 21°C. Two kinetic models, namely, the modified Logistic model (LOG) and the modified Gompertz model (GOM), were applied to fit experimental data and the respective kinetic constants were generated. Both models exhibited a very good fit to the measured data points (R2 > 0.987). The relationship of kinetic constants of substrates with fermentation temperatures was established and inserted into the LOG and GOM models; thus, generalized LOG and GOM models were obtained to predict SMY of the substrates at any temperature between 21 °C and 37 °C.
Collapse
|
6
|
Abstract
Primary coffee processing is performed following the dry method or wet method. The dry method generates husk as a by-product, while the wet method generates pulp, parchment, mucilage, and waste water. In this study, characterization, as well as the potential of husk, pulp, parchment, and mucilage for methane production were examined in biochemical methane potential assays performed at 37 °C. Pulp, husk, and mucilage had similar cellulose contents (32%). The lignin contents in pulp and husk were 15.5% and 17.5%, respectively. Mucilage had the lowest hemicellulose (0.8%) and lignin (5%) contents. The parchment showed substantially higher lignin (32%) and neutral detergent fiber (96%) contents. The mean specific methane yields from husk, pulp, parchment, and mucilage were 159.4 ± 1.8, 244.7 ± 6.4, 31.1 ± 2.0, and 294.5 ± 9.6 L kg−1 VS, respectively. The anaerobic performance of parchment was very low, and therefore was found not to be suitable for anaerobic fermentation. It was estimated that, in Ethiopia, anaerobic digestion of husk, pulp, and mucilage could generate as much as 68 × 106 m3 methane per year, which could be converted to 238,000 MWh of electricity and 273,000 MWh of thermal energy in combined heat and power units. Coffee processing facilities can utilize both electricity and thermal energy for their own productive purposes.
Collapse
|