1
|
Marchesan AN, Sampaio ILDM, Chagas MF, Generoso WC, Hernandes TAD, Morais ER, Junqueira TL. Alternative feedstocks for sustainable aviation fuels: Assessment of sugarcane-derived microbial oil. BIORESOURCE TECHNOLOGY 2025; 416:131772. [PMID: 39528025 DOI: 10.1016/j.biortech.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Pioneer facilities for Sustainable Aviation Fuels (SAF) convert fats, oils, and grease into hydrocarbons using the Hydroprocessed Esters and Fatty Acids (HEFA) technology. However, limited feedstock availability and sustainability concerns may restrict broader adoption. Biotechnology offers an alternative by enabling microbial oil production from sugars, expanding the feedstock portfolio with more productive biomass sources or waste materials. This study assessed the economic and environmental impacts of SAF production through HEFA using microbial oil from sugarcane, combining achievable fermentation performance with mature catalytic conversion. The results demonstrated SAF costs between $1.83 and $3.00 per liter and over 50 % reduction in greenhouse gas emissions compared to fossil fuels. Sensitivity analysis identified fermentation performance as the key factor driving these outcomes. Additionally, this approach yielded higher SAF per hectare than soybean-oil-based HEFA, potentially reducing emissions from land-use change.
Collapse
Affiliation(s)
- Andressa Neves Marchesan
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Isabelle Lobo de Mesquita Sampaio
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Mateus Ferreira Chagas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Wesley Cardoso Generoso
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Thayse Aparecida Dourado Hernandes
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Edvaldo Rodrigo Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Tassia Lopes Junqueira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Liu F, Lu Z, Lu T, Shi M, Wang H, Wu R, Cao J, Su E, Ma X. Metabolic engineering of oleaginous yeast in the lipogenic phase enhances production of nervonic acid. Metab Eng 2023; 80:193-206. [PMID: 37827446 DOI: 10.1016/j.ymben.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Insufficient biosynthesis efficiency during the lipogenic phase can be a major obstacle to engineering oleaginous yeasts to overproduce very long-chain fatty acids (VLCFAs). Taking nervonic acid (NA, C24:1) as an example, we overcame the bottleneck to overproduce NA in an engineered Rhodosporidium toruloides by improving the biosynthesis of VLCFAs during the lipogenic phase. First, evaluating the catalytic preferences of three plant-derived ketoacyl-CoA synthases (KCSs) rationally guided reconstructing an efficient NA biosynthetic pathway in R. toruloides. More importantly, a genome-wide transcriptional analysis endowed clues to strengthen the fatty acid elongation (FAE) module and identify/use lipogenic phase-activated promoter, collectively addressing the stagnation of NA accumulation during the lipogenic phase. The best-designed strain exhibited a high NA content (as the major component in total fatty acid [TFA], 46.3%) and produced a titer of 44.2 g/L in a 5 L bioreactor. The strategy developed here provides an engineering framework to establish the microbial process of producing valuable VLCFAs in oleaginous yeasts.
Collapse
Affiliation(s)
- Feixiang Liu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou, 236800, China
| | - Zewei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Manman Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Huimin Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong Wu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Díaz-Navarrete P, Marileo L, Madrid H, Belezaca-Pinargote C, Dantagnan P. Lipid Production from Native Oleaginous Yeasts Isolated from Southern Chilean Soil Cultivated in Industrial Vinasse Residues. Microorganisms 2023; 11:2516. [PMID: 37894174 PMCID: PMC10609240 DOI: 10.3390/microorganisms11102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, six strains of oleaginous yeasts native to southern Chile were analyzed for their biotechnological potential in lipid accumulation. For this purpose, the six strains, named PP1, PP4, PR4, PR10, PR27 and PR29, were cultivated in a nitrogen-deficient synthetic mineral medium (SMM). Then, two strains were selected and cultivated in an industrial residual "vinasse", under different conditions of temperature (°C), pH and carbon/nitrogen (C/N) ratio. Finally, under optimized conditions, the growth kinetics and determination of the lipid profile were evaluated. The results of growth in the SMM indicate that yeasts PP1 and PR27 presented biomass concentrations and lipid accumulation percentages of 2.73 and 4.3 g/L of biomass and 36.6% and 45.3% lipids, respectively. Subsequently, for both strains, when cultured in the residual vinasse under optimized environmental conditions, biomass concentrations of 14.8 ± 1.51 g/L (C/N 80) and 15.83 ± 0.57 g/L (C/N 50) and lipid accumulations of 28% and 30% were obtained for PP1 and PR27, respectively. The composition of the triglycerides (TGs), obtained in the culture of the yeasts in a 2 L reactor, presented 64.25% of saturated fatty acids for strain PR27 and 47.18% for strain PP1. The saturated fatty acid compositions in both strains are mainly constituted of fatty acids, myristic C 14:0, heptadecanoic C 17:0, palmitic C 16:0 and stearic C 18:0, and the monounsaturated fatty acids constituted of oleic acid C 18:1 (cis 9) (28-46%), and in smaller amounts, palmitoleic acid and heptadecenoic acid. This work demonstrates that the native yeast strains PP1 and PR27 are promising strains for the production of microbial oils similar to conventional vegetable oils. The potential applications in the energy or food industries, such as aquaculture, are conceivable.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Iquique 1101783, Chile;
| | - Carlos Belezaca-Pinargote
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Quevedo 120501, Ecuador;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
4
|
Villegas-Méndez MÁ, Montañez J, Contreras-Esquivel JC, Salmerón I, Koutinas AA, Morales-Oyervides L. Scale-up and fed-batch cultivation strategy for the enhanced co-production of microbial lipids and carotenoids using renewable waste feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117866. [PMID: 37030236 DOI: 10.1016/j.jenvman.2023.117866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.
Collapse
Affiliation(s)
- Miguel Ángel Villegas-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | | | - Iván Salmerón
- School of Chemical Science, Autonomous University of Chihuahua, Circuit 1, New University Campus, Chihuahua, Chihuahua, 31125, Mexico
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico.
| |
Collapse
|
5
|
Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces tetrasporus DSM 70314 from Bench to Pilot Scale. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microbial lipids are renewable platforms for several applications including biofuels, green chemicals, and nutraceuticals that can be produced from several residual carbon sources. Lignocellulosic biomasses are abundant raw materials for the production of second-generation sugars with conversion yields depending on the quality of the hydrolysates and the metabolic efficiency of the microorganisms. In the present work, wheat straw pre-treated by steam explosion and enzymatically hydrolysed was converted into microbial lipids by Lipomyces tetrasporus DSM 70314. The preliminary optimization of the enzymatic hydrolysis was performed at the bench scale through the response surface methodology (RSM). The fermentation medium and set-up were optimized in terms of the nitrogen (N) source and carbon-to-nitrogen (C/N) ratio yielding to the selection of soy flour as a N source and C/N ratio of 160. The bench scale settings were scaled-up and further optimized at the 10 L-scale and finally at the 50 L pilot scale bioreactor. Process optimization also included oxygen supply strategies. Under optimized conditions, a lipid concentration of 14.8 gL−1 was achieved corresponding to a 23.1% w/w lipid yield and 67.4% w/w lipid cell content. Oleic acid was the most abundant fatty acid with a percentage of 57%. The overall process mass balance was assessed for the production of biodiesel from wheat straw.
Collapse
|
6
|
Production of microbial oils by the oleaginous yeast Rhodotorula graminis S1/2R in a medium based on agro-industrial by-products. World J Microbiol Biotechnol 2022; 38:46. [PMID: 35083575 DOI: 10.1007/s11274-022-03236-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Biodiesel generated by transesterification of triglycerides from renewable sources is a clean form of energy that is currently used in many countries in blends with petrodiesel. It is mainly produced from food-grade vegetable oils obtained from oleaginous crops. High prices of these oils have made the sustainability of biodiesel production questionable. The use of nonedible feedstocks, such as intracellular triglycerides accumulated by oleaginous yeasts, appears as a feasible alternative. However, it has been demonstrated that an economically sustainable production of yeast oil could only be possible if low-cost media based on industrial subproducts, or wastes are used. In this work, we propose intracellular lipids production by a previously selected oleaginous yeast strain in a medium composed only by sugar cane vinasse and crude glycerol. Different culture strategies were studied. The highest biomass and lipid yields were obtained when the yeast R. graminis S1/2R was cultivated in batch without control of dissolved oxygen. The fatty acid methyl esters obtained under these conditions met the specification of international biodiesel standards.
Collapse
|
7
|
Shakeri S, Khoshbasirat F, Maleki M. Rhodosporidium sp. DR37: a novel strain for production of squalene in optimized cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:95. [PMID: 33858494 PMCID: PMC8048366 DOI: 10.1186/s13068-021-01947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rhodosporidium strain, a well-known oleaginous yeast, has been widely used as a platform for lipid and carotenoid production. However, the production of squalene for application in lipid-based biofuels is not reported in this strain. Here, a new strain of Rhodosporidium sp. was isolated and identified, and its potential was investigated for production of squalene under various cultivation conditions. RESULTS In the present study, Rhodosporidium sp. DR37 was isolated from mangrove ecosystem and its potential for squalene production was assessed. When Rhodosporidium sp. DR37 was cultivated on modified YEPD medium (20 g/L glucose, 5 g/L peptone, 5 g/L YE, seawater (50% v/v), pH 7, 30 °C), 64 mg/L of squalene was produced. Also, squalene content was obtained as 13.9% of total lipid. Significantly, use of optimized medium (20 g/L sucrose, 5 g/L peptone, seawater (20% v/v), pH 7, 25 °C) allowed highest squalene accumulation (619 mg/L) and content (21.6% of total lipid) in Rhodosporidium sp. DR37. Moreover, kinetic parameters including maximum specific cell growth rate (μmax, h-1), specific lipid accumulation rate (qp, h-1), specific squalene accumulation rate (qsq, h-1) and specific sucrose consumption rate (qs, h-1) were determined in optimized medium as 0.092, 0.226, 0.036 and 0.010, respectively. CONCLUSIONS This study is the first report to employ marine oleaginous Rhodosporidium sp. DR37 for accumulation of squalene in optimized medium. These findings provide the potential of Rhodosporidium sp. DR37 for production of squalene as well as lipid and carotenoids for biofuel applications in large scale.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Farshad Khoshbasirat
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
8
|
Shen H, Li Q, Yu X. Lipid Production by Rhodotorula glutinis in Continuous Cultivation with a Gravity Sedimentation System. Indian J Microbiol 2020; 60:246-250. [PMID: 32255857 PMCID: PMC7105584 DOI: 10.1007/s12088-019-00849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022] Open
Abstract
Lipid accumulation is generally believed to be a partially growth-coupled biochemical process that results in differences in lipid content between different cells. To separate lipid-rich cells and increase the cellular biomass in bioreactors during the cultivation of the oleaginous yeasts, a gravity sedimentation system (GSS) is coupled to a bioreactor. The dilution rate (D) and the ratio of the outflow rate from the outlet of the GSS to the inflow rate into the bioreactor (B) were evaluated. The biomass in the bioreactor with GSS increased by 16.3% and 30.6% at D values of 0.05 h-1 (B = 0.25) and 0.02 h-1 (B = 0.5), respectively. Interestingly, cells containing 39.3% lipids were obtained from the outlet of the GSS (D = 0.02 h-1, B = 0.5), and the lipid content increased by 7.8% compared to that of the bioreactor. The results indicated that use of a GSS is a very effective method for increasing the cell concentration and separation of lipid-rich cells.
Collapse
Affiliation(s)
- Hongwei Shen
- Dalian Xinyulong Marine Biological Seed Industry Technology Company Limited, 4 Luxun Rd., Dalian, 116023 People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| | - Qiang Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| | - Xue Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| |
Collapse
|