1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Eskiköy Bayraktepe D, Yıldız C, Yazan Z. The development of electrochemical DNA biosensor based on poly-l-methionine and bimetallic AuPt nanoparticles coating: Picomolar detection of Imatinib and Erlotinib. Talanta 2023; 257:124361. [PMID: 36801759 DOI: 10.1016/j.talanta.2023.124361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
We report on the preparation of a new and simple electrochemical DNA biosensor based on DNA/AuPt/p-L-Met coating on a screen-printed carbon electrode (SPE) and its use in the determination of the cancer therapy agents, Imatinib (IMA) and Erlotinib (ERL). Poly-l-methionine (p-L-Met), gold, and platinum nanoparticles (AuPt) were successfully coated by one-step electrodeposition onto the SPE from a solution containing L-Met, HAuCl4, and H2PtCl6. The immobilization of DNA was achieved by drop-casting on the surface of the modified electrode. Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Field-Emission Scanning Electron Microscopy (FE-SEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Atomic Force Microscopy (AFM) were used to investigate the morphology, the structure, and the electrochemical performance of the sensor. Experimental factors influencing the coating and DNA immobilization processes were optimized. The peak currents originating from guanine (G) and adenine (A) oxidation of ds-DNA were used as signals to quantify IMA and ERL in the concentration range 2.33-80 nM and 0.032-1.0 nM with the LODs of 0.18 nM and 0.009 nM, respectively. The biosensor developed was suitable for determining IMA and ERL in human serum and pharmaceutical samples.
Collapse
Affiliation(s)
| | - Ceren Yıldız
- Ankara University Faculty of Science Department of Chemistry, Ankara, 06560, Turkey
| | - Zehra Yazan
- Ankara University Faculty of Science Department of Chemistry, Ankara, 06560, Turkey.
| |
Collapse
|
3
|
Alosaimi AM, Alorabi RO, Katowah DF, Al-Thagafi ZT, Alsolami ES, Hussein MA, Qutob M, Rafatullah M. Recent Biomedical Applications of Coupling Nanocomposite Polymeric Materials Reinforced with Variable Carbon Nanofillers. Biomedicines 2023; 11:biomedicines11030967. [PMID: 36979948 PMCID: PMC10045870 DOI: 10.3390/biomedicines11030967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The hybridization between polymers and carbon materials is one of the most recent and crucial study areas which abstracted more concern from scientists in the past few years. Polymers could be classified into two classes according to the source materials synthetic and natural. Synthetic polymeric materials have been applied over a floppy zone of industrial fields including the field of biomedicine. Carbon nanomaterials including (fullerene, carbon nanotubes, and graphene) classified as one of the most significant sources of hybrid materials. Nanocarbons are improving significantly mechanical properties of polymers in nanocomposites in addition to physical and chemical properties of the new materials. In all varieties of proposed bio-nanocomposites, a considerable improvement in the microbiological performance of the materials has been explored. Various polymeric materials and carbon-course nanofillers were present, along with antibacterial, antifungal, and anticancer products. This review spots the light on the types of synthetic polymers-based carbon materials and presented state-of-art examples on their application in the area of biomedicine.
Collapse
Affiliation(s)
- Abeer M Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Randa O Alorabi
- Chemistry Department, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Dina F Katowah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 16722, Makkah 21955, Saudi Arabia
| | - Zahrah T Al-Thagafi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
4
|
Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes (Basel) 2022. [DOI: 10.3390/pr10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The even growing production of both well-known and new derivatives with pharmaceutical action involves the need for developing facile and reliable methods for the analysis of these compounds. Among the widely used instrumental techniques, the electrochemical ones are probably the simplest and the most rapid, also having good performance characteristics. However, the key tool in electroanalysis is the working electrode. Due to the inherent electrochemical and economic advantages of the pencil graphite electrode (PGE), the interest in its applicability in the analysis of different analytes has continuously increased in recent years. Thus, this paper aims to review the scientific reports published in the last 10 years on the use of the disposable eco- and user-friendly PGEs in the electroanalysis of compounds of pharmaceutical importance in different matrices. The PGE characteristics and designs (bare or modified with various types of materials), along with their applications and performance parameters (e.g., linear range, limit of detection, and reproducibility), will be discussed, and their advantages and limitations will be critically emphasized.
Collapse
|
5
|
Hosseinzadeh A, Pashaei S, Hosseinzadeh S, Namazi H. Surface modification of multiwalled carbon nanotubes via surface RAFT copolymerization method and capecitabine-loaded anticancer hydrogel for controlled drug delivery in stomach. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | | | - Hassan Namazi
- Chemistry Department, Faculty of Chemistry, University of Tabriz , Tabriz, Iran
| |
Collapse
|
6
|
A novel electrochemical sensor based on magnetic core@shell molecularly imprinted nanocomposite (Fe3O4@graphene oxide@MIP) for sensitive and selective determination of anticancer drug capecitabine. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Anzar N, Hasan R, Tyagi M, Yadav N, Narang J. Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100003] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|