1
|
Zhao J, Muawiya MA, Zhuang Y, Wang G. Developing rational scale-down simulators for mimicking substrate heterogeneities based on cell lifelines in industrial-scale bioreactors. BIORESOURCE TECHNOLOGY 2024; 395:130354. [PMID: 38272147 DOI: 10.1016/j.biortech.2024.130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The influence of extracellular variations on the cellular metabolism and thereby the process performance at large-scale can be evaluated using the so-called scale-down simulators. Nevertheless, the major challenge is to design an appropriate scale-down simulator, which can accurately mimic the cell lifelines that record the flow paths and experiences of cells circulating in large-scale bioreactors. To address this, a dedicated SDSA (scale-down simulator application) was purposedly developed on the basis of black box model and process reaction model established for Penicillium chrysogenum strain as well as cell lifelines or trajectories information in an industrial-scale fermentor. Guided by the SDSA, the industrial-relevant metabolic regimes for substrate availability, i.e., excess, limitation and starvation, were successfully reproduced at laboratory-scale three-compartment scale-down (SD) system. In addition, such SDSA can also display individual process dynamics in each compartment, and demonstrate how individual factors influence the entire bioprocess performance, thus serving both educational and research purposes.
Collapse
Affiliation(s)
- Jiachen Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Muhammad Alkali Muawiya
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Konopacki M, Jabłońska J, Dubrowska K, Augustyniak A, Grygorcewicz B, Gliźniewicz M, Wróblewski E, Kordas M, Dołęgowska B, Rakoczy R. The Influence of Hydrodynamic Conditions in a Laboratory-Scale Bioreactor on Pseudomonas aeruginosa Metabolite Production. Microorganisms 2022; 11:microorganisms11010088. [PMID: 36677380 PMCID: PMC9866481 DOI: 10.3390/microorganisms11010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrodynamic conditions are critical in bioprocessing because they influence oxygen availability for cultured cells. Processes in typical laboratory bioreactors need optimization of these conditions using mixing and aeration control to obtain high production of the desired bioproduct. It could be done by experiments supported by computational fluid dynamics (CFD) modeling. In this work, we characterized parameters such as mixing time, power consumption and mass transfer in a 2 L bioreactor. Based on the obtained results, we chose a set of nine process parameters to test the hydrodynamic impact on a selected bioprocess (mixing in the range of 0-160 rpm and aeration in the range of 0-250 ccm). Therefore, we conducted experiments with P. aeruginosa culture and assessed how various hydrodynamic conditions influenced biomass, pyocyanin and rhamnolipid production. We found that a relatively high mass transfer of oxygen (kLa = 0.0013 s-1) connected with intensive mixing (160 rpm) leads to the highest output of pyocyanin production. In contrast, rhamnolipid production reached maximal efficiency under moderate oxygen mass transfer (kLa = 0.0005 s-1) and less intense mixing (in the range of 0-60 rpm). The results indicate that manipulating hydrodynamics inside the bioreactor allows control of the process and may lead to a change in the metabolites produced by bacterial cells.
Collapse
Affiliation(s)
- Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: (M.K.); (A.A.)
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Institute of Biology, University of Szczecin, Wąska 13 Str., 71-415 Szczecin, Poland
- Correspondence: (M.K.); (A.A.)
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Emil Wróblewski
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Schirmer C, Eibl R, Maschke RW, Mozaffari F, Junne S, Daumke R, Ottinger M, Göhmann R, Ott C, Wenk I, Kubischik J, Eibl D. Single‐use Technology for the Production of Cellular Agricultural Products: Where are We Today? CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cedric Schirmer
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Regine Eibl
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Rüdiger W. Maschke
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Fruhar Mozaffari
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Stefan Junne
- Technische Universität Berlin Bioprocess Engineering Ackerstraße 76 13355 Berlin Germany
| | - Ralph Daumke
- PendoTECH/Mettler Toledo GmbH MTPRO Im Hackacker 15 8902 Urdorf Switzerland
| | - Melanie Ottinger
- Thermo Fisher Scientific Bioproduction Single Use Division, Unit 9 Atley Way NE23 1WA Cramlington United Kingdom
| | - Rüdiger Göhmann
- GEA Westfalia Separator Group GmbH Product Management Pharma/Chemicals Werner-Habig-Straße 1 59302 Oelde Germany
| | - Christian Ott
- Schott AG Biotech Christoph-Dorner-Straße 29 84028 Landshut Germany
| | - Irina Wenk
- Thermo Fisher Scientific Bioproduction Single Use Division, Unit 9 Atley Way NE23 1WA Cramlington United Kingdom
| | - Jens Kubischik
- Thermo Fisher Scientific Biosciences Division Frankfurter Straße 129b 64293 Darmstadt Germany
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| |
Collapse
|
4
|
Soerjawinata W, Kockler I, Wommer L, Frank R, Schüffler A, Schirmeister T, Ulber R, Kampeis P. Novel bioreactor internals for the cultivation of spore-forming fungi in pellet form. Eng Life Sci 2022; 22:474-483. [PMID: 35865648 PMCID: PMC9288991 DOI: 10.1002/elsc.202100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
This study introduced an automated long-term fermentation process for fungals grown in pellet form. The goal was to reduce the overgrowth of bioreactor internals and sensors while better rheological properties in the fermentation broth, such as oxygen transfer and mixing time, can be achieved. Because this could not be accomplished with continuous culture and fed-batch fermentation, repeated-batch fermentation was implemented with the help of additional bioreactor internals ("sporulation supports"). This should capture some biomass during fermentation. After harvesting the suspended biomass, intermediate cleaning was performed using a cleaning device. The biomass retained on the sporulation support went through the sporulation phase. The spores were subsequently used as inocula for the next batch. The reason for this approach was that the retained pellets could otherwise cause problems (e.g., overgrowth on sensors) in subsequent batches because the fungus would then show undesirable hyphal growth. Various sporulation supports were tested for sufficient biomass fixation to start the next batch. A reproducible spore concentration within the range of the requirements could be achieved by adjusting the sporulation support (design and construction material), and an intermediate cleaning adapted to this.
Collapse
Affiliation(s)
- Winda Soerjawinata
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Isabelle Kockler
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Lars Wommer
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Robert Frank
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff‐Forschung gGmbH (IBWF)MainzGermany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg University of MainzMainzGermany
| | - Roland Ulber
- Institute of Bioprocess EngineeringTechnical University KaiserslauternKaiserslauternGermany
| | - Percy Kampeis
- Institute for Biotechnical Process DesignTrier University of Applied Sciences, Environmental Campus BirkenfeldHoppstädten‐WeiersbachGermany
| |
Collapse
|