1
|
Ikehata H, Yamamoto M. Cyclobutane Pyrimidine Dimers Produced with Narrowband UVB Are on Average More Mutagenic than Those with Broadband UVB in Mouse Skin. Photochem Photobiol 2021; 98:916-924. [PMID: 34843117 DOI: 10.1111/php.13568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Although narrowband UVB (NB-UVB) has replaced broadband UVB (BB-UVB) because of its greater effectiveness in dermatological phototherapy, it is twice as carcinogenic as BB-UVB at an equivalent inflammatory dose. To clarify the basis of the different genotoxicities, we comparatively evaluated the mutagenicities in mouse skin of the two UVB types along with their efficiencies in the formation of cyclobutane pyrimidine dimer (CPD), which is a major mutagenic DNA photolesion specifically produced by UVR. We found that the mutagenicity averaged per single molecule of CPD was 2.5- and 1.8-fold higher in NB-UVB-exposed epidermis and dermis, respectively, which indicates that NB-UVB is more mutagenic for the skin than BB-UVB at doses producing an equimolar amount of CPD. Analysis of effective wavelengths for UV photolesion formation with each UVB source revealed a remarkable difference in the peak effective wavelengths for CPD formation: 15 nm longer for NB-UVB in the epidermis. Although the analysis of mutation profiles showed largely similar UV-specific signatures between the two UVB types, a relatively stronger preference for UVA-specific mutations was observed for NB-UVB. These results suggest that the difference in the effective wavelengths for CPD formation leads to the different mutagenicities and carcinogenicities between the UVB sources.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Konger RL, Derr-Yellin E, Travers JB, Ocana JA, Sahu RP. Epidermal PPARγ influences subcutaneous tumor growth and acts through TNF-α to regulate contact hypersensitivity and the acute photoresponse. Oncotarget 2017; 8:98184-98199. [PMID: 29228682 PMCID: PMC5716722 DOI: 10.18632/oncotarget.21002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
It is known that ultraviolet B (UVB) induces PPARγ ligand formation while loss of murine epidermal PPARγ (Pparg-/-epi) promotes UVB-induced apoptosis, inflammation, and carcinogenesis. PPARγ is known to suppress tumor necrosis factor-α (TNF-α) production. TNF-α is also known to promote UVB-induced inflammation, apoptosis, and immunosuppression. We show that Pparg-/-epi mice exhibit increased baseline TNF-α expression. Neutralizing Abs to TNF-α block the increased photo-inflammation and photo-toxicity that is observed in Pparg-/-epi mouse skin. Interestingly, the increase in UVB-induced apoptosis in Pparg-/-epi mice is not accompanied by a change in cyclobutane pyrimidine dimer clearance or in mutation burden. This suggests that loss of epidermal PPARγ does not result in a significant alteration in DNA repair capacity. However, loss of epidermal PPARγ results in marked immunosuppression using a contact hypersensitivity (CHS) model. This impaired CHS response was significantly alleviated using neutralizing TNF-α antibodies or loss of germline Tnf. In addition, the PPARγ agonist rosiglitazone reversed UVB-induced systemic immunosuppression (UV-IS) as well as UV-induced growth of B16F10 melanoma tumor cells in syngeneic mice. Finally, increased B16F10 tumor growth was observed when injected subcutaneously into Pparg-/-epi mice. Thus, we provide novel evidence that epidermal PPARγ is important for cutaneous immune function and the acute photoresponse.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Wright State University, Dayton, OH, USA
| | - Jesus A Ocana
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravi P Sahu
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH, USA
| |
Collapse
|
3
|
Masumura K, Sakamoto Y, Ikeda M, Asami Y, Tsukamoto T, Ikehata H, Kuroiwa Y, Umemura T, Nishikawa A, Tatematsu M, Ono T, Nohmi T. Antigenotoxic effects of p53 on spontaneous and ultraviolet light B--induced deletions in the epidermis of gpt delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:244-252. [PMID: 20740625 DOI: 10.1002/em.20610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
Tumor development in the skin may be a multistep process where multiple genetic alterations occur successively. The p53 gene is involved in genome stability and thus is referred to as "the guardian of the genome." To better understand the antigenotoxic effects of p53 in ultraviolet light B (UVB)-induced mutagenesis, mutations were measured in the epidermis of UVB-irradiated p53(+/+) and p53(-/-) gpt delta mice. In the mouse model, point mutations and deletions are separately identified by the gpt and Spi(-) assays, respectively. The mice were exposed to UVB at single doses of 0.5, 1.0, or 2.0 kJ/m(2) . The mutant frequencies (MFs) were determined 4 weeks after the irradiation. All doses of UVB irradiation enhanced gpt MFs by about 10 times than that of unirradiated mice. There were no significant differences in gpt MFs and the mutation spectra between p53(+/+) and p53(-/-) mice. The predominant mutations induced by UVB irradiation were G:C to A:T transitions at dipyrimidines. In contrast, in unirradiated p53(-/-) mice, the frequencies of Spi(-) large deletions of more than 1 kb and complex-type deletions with rearrangements were significantly higher than those of the Spi(-) large deletions in p53(+/+) counterparts. The specific Spi(-) mutation frequency of more than 1 kb deletions and complex types increased in a dose-dependent manner in the p53(+/+) mice. However, no increase of such large deletions was observed in irradiated p53(-/-) mice. These results suggest that the antigenotoxic effects of p53 may be specific to deletions and complex-type mutations induced by double-strand breaks in DNA.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pines A, Backendorf C, Alekseev S, Jansen JG, de Gruijl FR, Vrieling H, Mullenders LHF. Differential activity of UV-DDB in mouse keratinocytes and fibroblasts: impact on DNA repair and UV-induced skin cancer. DNA Repair (Amst) 2008; 8:153-61. [PMID: 18996499 DOI: 10.1016/j.dnarep.2008.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.
Collapse
Affiliation(s)
- Alex Pines
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
5
|
Wu Y, Tai CL, Wei H, He F, Wang Y, Zhao Y, Chen HD. Protective Effects of Cyclooxygenase-2 Inhibitors on Narrow-band Ultraviolet B-irradiated Epidermal Ia+Langerhans Cells and Thy-1+Dendritic Epidermal T Cells in Mice. Photochem Photobiol 2008; 84:484-8. [DOI: 10.1111/j.1751-1097.2007.00289.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ikehata H, Saito Y, Yanase F, Mori T, Nikaido O, Ono T. Frequent recovery of triplet mutations in UVB-exposed skin epidermis of Xpc-knockout mice. DNA Repair (Amst) 2007; 6:82-93. [PMID: 17049932 DOI: 10.1016/j.dnarep.2006.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Mutations of the Xpc gene cause a deficiency in global genome repair, a subpathway of nucleotide excision repair (NER), in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of an Xpc null mutation (Xpc-/-) on damage induction, repair and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpc-/- and wild-type mice. CPDs were not significantly removed in either of the mouse genotypes by 12h after irradiation, whereas removal of 64PPs was observed in the wild-type. Irradiation with 300 and 400J/m2 UVB increased the lacZ mutant frequency in the Xpc-/- epidermis to at least twice as high as in the wild-type. Ninety-nine lacZ mutants isolated from the UVB-exposed epidermis of Xpc(-/-)mice were analyzed and compared with mutant sequences from irradiated wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in the dominance of C-->T transitions at dipyrimidine sites; however, Xpc-/- mice had a higher frequency of two-base tandem substitutions, including CC-->TT mutations, three-base tandem substitutions and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We concluded that the triplet mutation is a UV-specific mutation that preferably occurs in NER deficient genetic backgrounds.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Ikehata H, Yanase F, Mori T, Nikaido O, Tanaka K, Ono T. Mutation spectrum in UVB-exposed skin epidermis of Xpa-knockout mice: frequent recovery of triplet mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:1-13. [PMID: 17163503 DOI: 10.1002/em.20262] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Knockout mutations in both alleles of the Xpa gene give rise to a complete deficiency in nucleotide excision repair (NER) in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of Xpa null mutation (Xpa(-/-)) on damage induction, repair, and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpa(-/-) and wild-type mice. Neither photolesion was removed in the Xpa(-/-) epidermis by 12 hr after irradiation whereas removal of 64PPs was observed in the epidermis of wild-type mice. Irradiation with 200 and 300 J/m(2) UVB increased the lacZ mutant frequency in the epidermis of Xpa(-/-) mice, but the induced mutant frequencies were not significantly different from those previously determined for wild-type mice. One-hundred lacZ mutants isolated from the UVB-exposed epidermis of Xpa(-/-) mice were analyzed and compared with mutant sequences previously determined for irradiated wild-type mice. The distribution of the mutations along the lacZ transgene and the preferred dipyrimidine context of the UV-specific mutations were similar in mutants from the Xpa(-/-) and wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in a dominance of C --> T transitions at dipyrimidine sites; however, Xpa(-/-) mice had a higher frequency than wild-type mice of two-base tandem substitutions, including CC --> TT mutations, three-base tandem mutations and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We conclude that the triplet mutation is a UV-specific mutation that preferably occurs in NER-deficient genetic backgrounds.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Wang F, Saito Y, Shiomi T, Yamada S, Ono T, Ikehata H. Mutation spectrum in UVB-exposed skin epidermis of a mildly-affected Xpg-deficient mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:107-16. [PMID: 16247763 DOI: 10.1002/em.20173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A C-terminal 183 amino acid-truncated mutation of the mouse Xpg gene (XpgDeltaex15) gives rise to a partial deficiency in nucleotide excision repair in homozygously affected cells. We studied the effect of this mutation on UVB-induced mutagenesis in mouse skin, using transgenic mice harboring lambda-phage-based bacterial lacZ genes as a mutational reporter. UVB increased the lacZ mutant frequency in the epidermis moderately in the homozygous mutant mice, but significantly higher than in the wild-type or the heterozygous mice, whereas background mutant frequencies were not appreciably different among the three mouse genotypes. Ninety-eight lacZ mutant sequences isolated from the UVB-exposed epidermis of the XpgDeltaex15-homozygous mice were analyzed and compared with mutant sequences from the wild-type mice. The spectra of the mutations in the two mouse genotypes were not significantly different, and they were highly UV-specific. There were frequent C --> T transitions at dipyrimidine sites and several CC --> TT tandem mutations, although the UV-specific mutations occurred more frequently at CpG sites in the mutant mice. The distribution of the mutations observed in the lacZ transgene and the preferred sequence context of the UV-specific C --> T mutations (5'-TC-3' > 5'-CC-3' > 5'-CT-3') in the Xpg-mutant mice were similar to those found in the wild-type mice. Despite these similarities, we detected a previously unrecognized type of the UV-induced mutation only in the Xpg mutant (6/98 in the mutation spectrum of the mutant vs. 0/76 in the wild-type; P = 0.035), which is characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We propose that this putative new class of mutation, which we refer to as a "triplet mutation", is characteristic of UV-induced mutation in an excision-repair-deficient background.
Collapse
Affiliation(s)
- Feng Wang
- Department of Radiotherapy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590:1-280. [PMID: 16081315 DOI: 10.1016/j.mrrev.2005.04.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
Collapse
Affiliation(s)
- Iain B Lambert
- Mutagenesis Section, Environmental Health Sciences Bureau, Healthy Environments and Consumer Safety Branch, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | |
Collapse
|
10
|
Ikehata H, Nakamura S, Asamura T, Ono T. Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis. Mutat Res 2004; 556:11-24. [PMID: 15491628 DOI: 10.1016/j.mrfmmm.2004.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/19/2004] [Accepted: 06/25/2004] [Indexed: 05/01/2023]
Abstract
We studied the mutations induced in skin by sunlight using transgenic Muta mice. Noon sunlight during summer at Sendai, Japan induced mutations efficiently in both epidermis and dermis. The mutant frequency (MF) in epidermis reached nearly 0.5% during the first 40 min irradiation but became saturated at this level with the appearance of skin inflammation after further irradiation. At the equivalent inflammatory dose, sunlight was twice as genotoxic as 313 nm-peak UVB. The 81 mutations detected in 80 lacZ transgene mutants isolated from the sunlight-exposed epidermis were dominated by C --> T transitions (89%), occurring exclusively at dipyrimidine sites, and also included a CC --> TT tandem substitution. Thus, the sunlight-induced mutation spectrum is highly UV-specific, quite similar to that induced by UVB but significantly different from that induced by UVA. Although oxidative damage-related C --> A transversions were detected only in five mutants (6%), their frequency was elevated to at least 15 times the background level, suggesting that the contribution of UVA-mediated oxidative stress is comparatively small but considerable. An analysis of bases adjacent to the mutated cytosines revealed that the sunlight-induced mutations prefer 5'-TC-3' dipyrimidine sites to 5'-CC-3' and 5'-CT-3'. The distribution of the frequent C --> T transition sites in the transgene was well associated with the CpG motif, which is known to be completely methylated in the gene, and quite similar to that induced by UVB rather than that by UVA. Thus, the UVB component contributes to the sunlight-induced mutations in the mammalian skin much more than the UVA component, whose influence through reactive oxygen species (ROS)-mediated mutagenesis is still appreciable.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
11
|
Ikehata H, Masuda T, Sakata H, Ono T. Analysis of mutation spectra in UVB-exposed mouse skin epidermis and dermis: frequent occurrence of C-->T transition at methylated CpG-associated dipyrimidine sites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:280-292. [PMID: 12717783 DOI: 10.1002/em.10153] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We recently reported the kinetics of mutation induction by UVB in the skin epidermis and dermis of transgenic Muta trade mark mice [Ikehata and Ono, Mutat Res 508:41-47, 2002]. In the present study we determined the complete DNA sequence of the lacZ transgene in 208 mutants isolated from the dermis and epidermis of UVB-irradiated and control mice. The resulting mutation patterns for the dermis and epidermis were similar, although two CC-->TT tandem substitutions, one of the signature mutations for UV insult, were detected only among the UVB-induced epidermal mutants. The spectra of the UVB-induced and control mutations were both dominated by C-->T transitions (83% and 62%); however, the C-->T transitions from irradiated mice occurred almost exclusively in dipyrimidine sites, while those from control mice preferred CpG sites. Thus, the mutation spectrum detected for the irradiated skin tissues was different from the background spectrum and UV-specific, confirming the utility of the transgenic system for UVB-induced mutation studies in vivo. An analysis of the bases adjacent to the mutated cytosines from irradiated mice revealed that the dipyrimidine sites preferred for UVB-induced mutation were 5'-TC-3' > 5'-CC-3' > 5'-CT-3'. Among mutants from irradiated mice, C-->T transitions were recovered frequently at dipyrimidine sites associated with CpG. We showed that CpG sites in the lacZ transgene of Muta trade mark mice were heavily methylated in both the epidermis and dermis. Thus, CpG methylation could contribute to the UVB-induced recurrent or hotspot mutations in the mammalian genome.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
12
|
Ikehata H, Ono T. Mutation induction with UVB in mouse skin epidermis is suppressed in acute high-dose exposure. Mutat Res 2002; 508:41-7. [PMID: 12379460 DOI: 10.1016/s0027-5107(02)00145-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time and dose dependence of ultraviolet B (UVB)-induced mutant frequency (MF) in skin epidermis and dermis was studied with transgenic Muta mice harboring lambdagt10lacZ shuttle vector. Mutants of the lacZ transgene appearing in these tissues after 0.5kJ/m(2) UVB irradiation were fully expressed in 3-7 days, and the frequencies of those fully expressed mutants were maintained for at least the following 3 weeks. These fully expressed MFs increased dose-dependently, with the initial slope for the epidermis four times larger than that for dermis. Surprisingly, in epidermis, an inhibition of the dose-dependent mutation induction was evident after irradiation above 0.5kJ/m(2) UVB, lowering the increment more than eight-fold, while such suppression was not observed in dermis. This anticarcinogenic epidermal response disappeared with dose fractionation when the fractions were delivered at 4-week intervals, but not when delivered every day, showing that the induced mutation suppression is maintained under continual repetitive exposure, without which it expires within 4 weeks. These results suggest that repetition of heavy sun exposure at long intervals, e.g. recreational sunbathing every summer, is more likely to cause skin cancer than every day continual exposure even if the total UV doses are the same.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Division of Genome and Radiation Biology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | |
Collapse
|