1
|
Naves MPC, de Morais CR, de Freitas V, Ribeiro DL, Lopes DS, Antunes LMG, de Melo Rodrigues V, de Rezende AAA, Spanó MA. Mutagenic and genotoxic activities of Phospholipase A 2 Bothropstoxin-I from Bothrops jararacussu in Drosophila melanogaster and human cell lines. Int J Biol Macromol 2021; 182:1602-1610. [PMID: 34033823 DOI: 10.1016/j.ijbiomac.2021.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 μg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 μg/mL highly mutagenic and 107.5 μg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 μg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 μg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Vitor de Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute in Health, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Oliveira VC, Constante SAR, Orsolin PC, Nepomuceno JC, de Rezende AAA, Spanó MA. Modulatory effects of metformin on mutagenicity and epithelial tumor incidence in doxorubicin-treated Drosophila melanogaster. Food Chem Toxicol 2017; 106:283-291. [DOI: 10.1016/j.fct.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022]
|
3
|
Saturnino RS, Machado NM, Lopes JC, Nepomuceno JC. Assessment of the mutagenic, recombinogenic, and carcinogenic potential of amphotericin B in somatic cells of Drosophila melanogaster. Drug Chem Toxicol 2017; 41:9-15. [PMID: 28274136 DOI: 10.1080/01480545.2016.1188302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amphotericin B (AmB) is an antifungal antibiotic extracted from Streptomyces nodosus. Its fungicidal activity depends primarily on its binding to the sterol group that is present in fungal membranes. In view of the toxicity of this drug, the purpose of this study was to evaluate its mutagenic, carcinogenic, and recombinogenic activity, based on the wing somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts) applied to Drosophila melanogaster. Larvae were chronically treated with different concentrations of AmB (0.01, 0.02, and 0.04 mg/mL). The results revealed that AmB is a promutagen exhibiting increase in the number of spots on individuals from high bioactivation (HB) cross with a high level of cytochrome P450. The results also indicate that the main genotoxic event induced by AmB is recombinogenicity. Homologous recombination can act as a determinant at different stages of carcinogenesis. For verification of carcinogenic potential of this compound, larvae from the wts/mwh and wts/ORR, flr3 were treated with the same three AmB concentrations used in the SMART assay. The results did not provide evidence that AmB has carcinogenic potential in wts/mwh individuals. However, individuals from wts/ORR, flr3 developed tumors at the highest concentration tested.
Collapse
Affiliation(s)
- Rosiane Soares Saturnino
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Nayane Moreira Machado
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Jeyson Cesary Lopes
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Júlio César Nepomuceno
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| |
Collapse
|
4
|
Overview of the Role of Vanillin on Redox Status and Cancer Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9734816. [PMID: 28077989 PMCID: PMC5204113 DOI: 10.1155/2016/9734816] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
Bioactive natural products play critical roles in modern drug development, especially anticancer agents. It has been widely reported that various pharmacological activities of such compounds are related to their antioxidant properties. Vanillin is a natural substance widely found in many plant species and often used in beverages, foods, cosmetics, and pharmaceutical products. Antioxidant and anticancer potential have been described for this compound. Considering the importance of vanillin in the area of human health and food and pharmaceuticals sectors, in this review, we discuss the role of vanillin on redox status and its potential contribution to the prevention and the treatment of cancer.
Collapse
|
5
|
Machado NM, de Rezende AAA, Nepomuceno JC, Tavares DC, Cunha WR, Spanó MA. Evaluation of mutagenic, recombinogenic and carcinogenic potential of (+)-usnic acid in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2016; 96:226-33. [PMID: 27497765 DOI: 10.1016/j.fct.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
The main of this study was to evaluate the mutagenic and carcinogenic potential of (+) - usnic acid (UA), using Somatic Mutation and Recombination Test (SMART) and the test for detecting epithelial tumor clones (wts) in Drosophila melanogaster. Larvae from 72 ± 4 h from Drosophila were fed with UA (5.0, 10.0 or 20.0 mM); urethane (10.0 mM) (positive control); and solvent (Milli-Q water, 1% Tween-80 and 3% ethanol) (negative control). ST cross produced increase in total mutant spots in the individuals treated with 5.0, 10.0 or 20.0 mM of UA. HB cross produced spot frequencies in the concentration of 5.0 mM that were higher than the frequency for the same concentration in the ST cross. In the highest concentrations the result was negative, which means that the difference observed can be attributed, in part, to the high levels of P450, suggesting that increasing the metabolic capacity maximized the toxic effect of these doses. In the evaluation of carcinogenesis using the wts test, the results obtained for the same concentrations of UA show a positive result for the presence of tumors when compared to the negative control. We conclude that UA has recombinogenic, mutagenic and carcinogenic effects on somatic cells in D. melanogaster.
Collapse
Affiliation(s)
- Nayane Moreira Machado
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | | | - Júlio César Nepomuceno
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratório de Citogenética e Mutagênese, Patos de Minas, Minas Gerais, Brazil
| | | | | | - Mário Antônio Spanó
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Campus Umuarama, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
6
|
da Silva RA, Dihl RR, Dias LP, Costa MP, de Abreu BRR, Cunha KS, Lehmann M. DNA damage protective effect of honey-sweetened cashew apple nectar in Drosophila melanogaster. Genet Mol Biol 2016; 39:431-41. [PMID: 27560988 PMCID: PMC5004822 DOI: 10.1590/1678-4685-gmb-2015-0129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Fruits and derivatives, such as juices, are complex mixtures of chemicals, some of which may have mutagenic and/or carcinogenic potential, while others may have antimutagenic and/or anticancer activities. The modulating effects of honey-sweetened cashew apple nectar (HSCAN), on somatic mutation and recombination induced by ethyl methanesulfonate (EMS) and mitomycin C (MMC) were evaluated with the wing spot test in Drosophila melanogaster using co- and post-treatment protocols. Additionally, the antimutagenic activity of two HSCAN components, cashew apple pulp and honey, in MMC-induced DNA damage was also investigated. HSCAN reduced the mutagenic activity of both EMS and MMC in the co-treatment protocol, but had a co-mutagenic effect when post-administered. Similar results were also observed with honey on MMC mutagenic activity. Cashew apple pulp was effective in exerting protective or enhancing effects on the MMC mutagenicity, depending on the administration protocol and concentration used. Overall, these results indicate that HSCAN, cashew apple and honey seem capable of modulating not only the events that precede the induced DNA damages, but also the Drosophila DNA repair processes involved in the correction of EMS and MMC-induced damages.
Collapse
Affiliation(s)
- Robson Alves da Silva
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI),
Teresina, PI, Brazil
| | - Rafael Rodrigues Dihl
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Lucas Pinheiro Dias
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI),
Teresina, PI, Brazil
| | - Maiane Papke Costa
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Bianca Regina Ribas de Abreu
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Kênya Silva Cunha
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e
Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de
Goiás (UFG), Goiânia, GO, Brazil
| | - Mauricio Lehmann
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
7
|
Pereira Si L, Zafred RRT, Spano MA, Martins GR, Figueiredo CCM, Ferreira PC, Goncalves RM. Pro-oxidant Activity and Genotoxicity of the Astronium fraxinifolium Using Wing SMART and Allium cepa Test. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/rjmp.2016.276.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Jacociunas LV, Dihl RR, Lehmann M, de Barros Falcão Ferraz A, Richter MF, da Silva J, de Andrade HHR. Effects of artichoke (Cynara scolymus) leaf and bloom head extracts on chemically induced DNA lesions in Drosophila melanogaster. Genet Mol Biol 2014; 37:90-104. [PMID: 24688296 PMCID: PMC3958332 DOI: 10.1590/s1415-47572014000100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/02/2013] [Indexed: 11/22/2022] Open
Abstract
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.
Collapse
Affiliation(s)
- Laura Vicedo Jacociunas
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS,
Brazil
| | - Rafael Rodrigues Dihl
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS,
Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas, RS,
Brazil
| | - Mauricio Lehmann
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS,
Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas, RS,
Brazil
| | - Alexandre de Barros Falcão Ferraz
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS,
Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas, RS,
Brazil
| | - Marc François Richter
- Curso de Biologia Marinha e Costeira, Universidade Estadual do Rio Grande do Sul, Porto Alegre, RS,
Brazil
| | - Juliana da Silva
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS,
Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Canoas, RS,
Brazil
| | | |
Collapse
|
9
|
Pádua PFMR, Dihl RR, Lehmann M, de Abreu BRR, Richter MF, de Andrade HHR. Genotoxic, antigenotoxic and phytochemical assessment of Terminalia actinophylla ethanolic extract. Food Chem Toxicol 2013; 62:521-7. [PMID: 24071477 DOI: 10.1016/j.fct.2013.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022]
Abstract
Terminalia actinophylla has been used for anti-diarrheic and haemostatic purposes in Brazil. The fly spot data obtained after exposure of marker-heterozygous Drosophila melanogaster larvae to T. actinophylla ethanolic extract (TAE) in the standard (ST) and high bioactivation (HB) crosses revealed that TAE did not induce any statistically significant increment in any spot categories. Differences between the two crosses are related to cytochrome P450 (CYPs) levels. In this sense, our data pointed out the absence of TAE-direct and indirect mutagenic and recombinagenic action in the Somatic Mutation and Recombination Test (SMART). When the anti-genotoxicity of TAE was analyzed, neither mitomycin C (MMC) nor ethylmethanesulfonate (EMS) genotoxicity was modified by the post-exposure to TAE, which suggests that TAE has no effect on the mechanisms involved in the processing of the lesions induced by both genotoxins. In the mwh/flr(3) genotype, co-treatment with TAE may lead to a significant protection against the genotoxicity of MMC and a weak but significant effect in the toxic genetic action of EMS. The overall findings suggested that the favorable modulations by TAE could be, at least in part, due to its antioxidative potential.
Collapse
Affiliation(s)
- P F M R Pádua
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Orsolin PC, Silva-Oliveira RG, Nepomuceno JC. Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2012; 50:2598-604. [PMID: 22621838 DOI: 10.1016/j.fct.2012.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
Abstract
In this study the mutagenic, recombinagenic, carcinogenic and anticarcinogenic potential of orlistat was assessed using the somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts). The experiments were conducted on Drosophila melanogaster. In the assessment using SMART, larvae, descendants from the standard (ST) cross and the high bioactivation (HB) cross, were treated chronically with three orlistat concentrations. The results revealed a recombinagenic effect, associated with orlistat, in the descendants of the HB cross, at all three levels of concentration. Homologous recombination can function as a determinant at different stages of carcinogenesis. For verification, larvae from the wts test, descendants of the wts/TM3 virgin female and mwh/mwh male cross, were treated with the same three orlistat concentrations separately and in association with mitomicin C (0.1mM). The results did not, however, provide evidence that orlistat has carcinogenic potential nor was it associated with the reduction of tumors induced by mitomicin C in D. melanogaster.
Collapse
Affiliation(s)
- P C Orsolin
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | | | | |
Collapse
|
11
|
de Rezende A, e Silva M, Tavares D, Cunha W, Rezende K, Bastos J, Lehmann M, de Andrade H, Guterres Z, Silva L, Spanó M. The effect of the dibenzylbutyrolactolic lignan (−)-cubebin on doxorubicin mutagenicity and recombinogenicity in wing somatic cells of Drosophila melanogaster. Food Chem Toxicol 2011; 49:1235-41. [DOI: 10.1016/j.fct.2011.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
|
12
|
Anuradha K, Naidu MM, Manohar RS, Indiramma AR. Effect of vanilla extract on radical scavenging activity in biscuits. FLAVOUR FRAG J 2010. [DOI: 10.1002/ffj.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mourtzinos I, Konteles S, Kalogeropoulos N, Karathanos VT. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Schneider LE, do Amaral VS, Dihl RR, Lehmann M, Reguly ML, de Andrade HHR. Assessment of genotoxicity of Lidocaine, Prilonest and Septanest in the Drosophila wing-spot test. Food Chem Toxicol 2008; 47:205-8. [PMID: 19027815 DOI: 10.1016/j.fct.2008.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/25/2008] [Accepted: 10/30/2008] [Indexed: 11/18/2022]
Abstract
The scope of this study was to characterize the likely interaction Lidocaine, Prilonest and Septanest have with DNA, with a view to quantitatively and qualitatively establishing mutagenic, clastogenic, and/or recombinagenic activity of those compounds. The wing somatic mutation and recombination test in Drosophila melanogaster, which detects simultaneously point and chromosomal mutations as well as recombination induced by the activity of genotoxins of direct and indirect action, was used. Each of the anesthetics was tested at different concentrations, administered orally for 48 h to 3rd-stage larvae, in two independent experiments, with concurrent negative controls. The results obtained revealed that only Prilonest exhibits genotoxic activity in somatic cells, being able to induce exclusively homologous recombination. Additionally, it was possible to conclude that the genotoxic effect attributed to Prilonest is not related to metabolites produced via the P450-type enzymes. However, both Lidocaine and Septanest are unable to induce either events related to gene and chromosomal mutation, or reciprocal recombination.
Collapse
Affiliation(s)
- L E Schneider
- Laboratório da Toxicidade Genética (TOXIGEN), Programa de Pós-Graduação em Genética e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil (ULBRA), Predio 22, 4 degrees andar, Sala 25, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Fragiorge EJ, Spanó MA, Antunes LMG. Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000300025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Furlanetto MP, Sinigaglia M, Amaral VSD, Dihl RR, de Andrade HHR. Effect of vanillin on toxicant-induced lethality in the Drosophila melanogaster DNA repair test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:67-70. [PMID: 17177210 DOI: 10.1002/em.20275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vanillin (VA) modulates the genotoxicity of chemical and physical agents in a complex manner. Previous studies indicate that VA inhibits the mutagenicity but increases the mitotic homologous recombination caused by at least some genotoxic agents. In the present study, we have evaluated the effects of VA on the repair of lethal damage produced by three genotoxins, N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), and mitomycin C (MMC), using the DNA repair test (DRT) in Drosophila melanogaster. VA, 0.25% and 0.5% (w/v), increased the toxicity of MMC and EMS in repair-deficient flies, as measured by a decrease in the proportion of male to female progeny in the DRT; sex ratios decreased from 18-48% for MMC and 21-97% for EMS. These effects may be caused by the inhibition of nonhomologous DNA end joining caused by VA. In contrast to the results with MMC and EMS, VA protected against the lethality of ENU in repair-defective flies, as measured by a 43-207% increase in the survival of male flies in the DRT. It was inferred that the protective effect was due to VA modulating stages prior to the induction of ENU lesions in DNA, including modulating the antioxidant properties of VA and/or to its interference with the metabolic activation and/or detoxification of specific genotoxins. The results from this study indicate that the characterization of VA as a promising agent for preventing damage to genes and chromosomes should be tempered by observations that VA can increase the toxicity of chemical agents.
Collapse
Affiliation(s)
- Magda Patrícia Furlanetto
- Laboratório de Diagnóstico da Toxicidade Genética-TOXIGEN, Universidade Luterana, do Brasil-ULBRA, Canoas, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
17
|
King AA, Shaughnessy DT, Mure K, Leszczynska J, Ward WO, Umbach DM, Xu Z, Ducharme D, Taylor JA, DeMarini DM, Klein CB. Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat Res 2006; 616:60-9. [PMID: 17178418 PMCID: PMC1955325 DOI: 10.1016/j.mrfmmm.2006.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary flavorings that exhibit antimutagenic activity against mutagen-induced and spontaneous mutations in bacteria. Although these compounds were antimutagenic against chromosomal mutations in mammalian cells, they have not been studied for antimutagenesis against spontaneous gene mutations in mammalian cells. Thus, we initiated studies with VAN and CIN in human mismatch repair-deficient (hMLH1(-)) HCT116 colon cancer cells, which exhibit high spontaneous mutation rates (mutations/cell/generation) at the HPRT locus, permitting analysis of antimutagenic effects of agents against spontaneous mutation. Long-term (1-3 weeks) treatment of HCT116 cells with VAN at minimally toxic concentrations (0.5-2.5mM) reduced the spontaneous HPRT mutant fraction (MF, mutants/10(6) survivors) in a concentration-related manner by 19-73%. A similar treatment with CIN at 2.5-7.5microM yielded a 13-56% reduction of the spontaneous MF. Short-term (4-h) treatments also reduced the spontaneous MF by 64% (VAN) and 31% (CIN). To investigate the mechanisms of antimutagenesis, we evaluated the ability of VAN and CIN to induce DNA damage (comet assay) and to alter global gene expression (Affymetrix GeneChip) after 4-h treatments. Both VAN and CIN induced DNA damage in both mismatch repair-proficient (HCT116+chr3) and deficient (HCT116) cells at concentrations that were antimutagenic in HCT116 cells. There were 64 genes whose expression was changed similarly by both VAN and CIN; these included genes related to DNA damage, stress responses, oxidative damage, apoptosis, and cell growth. RT-PCR results paralleled the Affymetrix results for four selected genes (HMOX1, DDIT4, GCLM, and CLK4). Our results show for the first time that VAN and CIN are antimutagenic against spontaneous mutations in mammalian (human) cells. These and other data lead us to propose that VAN and CIN may induce DNA damage that elicits recombinational DNA repair, which reduces spontaneous mutations.
Collapse
Affiliation(s)
- Audrey A. King
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - Daniel T. Shaughnessy
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Kanae Mure
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
- Department of Public Health, Wakayama Medical University, School of Medicine, Wakayama City, Wakayama, Japan
| | - Joanna Leszczynska
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - William O. Ward
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711
| | - David M. Umbach
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Zongli Xu
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Danica Ducharme
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Jack A. Taylor
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - David M. DeMarini
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Catherine B. Klein
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
- **Corresponding author: Tel: +1 845 731 3510; fax: +1 845 351 2058. e-mail:
| |
Collapse
|
18
|
Shaughnessy DT, Schaaper RM, Umbach DM, DeMarini DM. Inhibition of spontaneous mutagenesis by vanillin and cinnamaldehyde in Escherichia coli: Dependence on recombinational repair. Mutat Res 2006; 602:54-64. [PMID: 16999979 PMCID: PMC2099251 DOI: 10.1016/j.mrfmmm.2006.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, DeltauvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage-resulting in an antimutagenic effect on spontaneous mutation.
Collapse
Affiliation(s)
- Daniel T. Shaughnessy
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - David M. Umbach
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - David M. DeMarini
- Environmental Carcinogenesis Division, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- * Corresponding author. Tel.: +1 919 541 1510; fax: +1 919 541 0694. E-mail address: (D.M. DeMarini)
| |
Collapse
|
19
|
Sinigaglia M, Lehmann M, Baumgardt P, do Amaral VS, Dihl RR, Reguly ML, de Andrade HHR. Vanillin as a modulator agent in SMART test: Inhibition in the steps that precede N-methyl-N-nitrosourea-, N-ethyl-N-nitrosourea-, ethylmethanesulphonate- and bleomycin-genotoxicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 607:225-30. [PMID: 16777474 DOI: 10.1016/j.mrgentox.2006.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 04/20/2006] [Accepted: 04/26/2006] [Indexed: 11/20/2022]
Abstract
Vanillin (VA), the world's major flavoring compound used in food industry and confectionery products - that has antimutagenic and anticarcinogenic activity against a variety of mutagenic/carcinogenic agents - was tested for the interval between the formation of premutational lesion and it is finalization as a DNA lesion. The overall findings using co-treatment protocols in SMART test suggest that VA can lead to a significant protection against the general genotoxicity of ethylmethanesulphonate (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) and bleomycin sulphate (BLEO). Considering MNU, ENU and EMS the desmutagenic activity observed could result from VA-stimulation of detoxification, via induction of glutathione S-transferase. However, the protector effect related to BLEO could be attributed to its powerful scavenger ability, which has the potential to prevent oxidative damage induced by BLEO.
Collapse
Affiliation(s)
- Marialva Sinigaglia
- Laboratório de Mutagênese, Departamento de Genética, Universidade Federal do Rio Grande do Sul, CP 15053, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|