1
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
2
|
Tagorti G, Yalçın B, Güneş M, Kurşun AY, Kaya B. Genotoxic and genoprotective effects of phytoestrogens: a systematic review. Drug Chem Toxicol 2023; 46:1242-1254. [PMID: 36606318 DOI: 10.1080/01480545.2022.2146134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
Phytoestrogens are xenoestrogens found in plants with a myriad of health benefits. However, various studies reported the genotoxic effects of these substances. Thus, we reviewed in vitro and in vivo studies published in PubMed, Scopus, and Web of Science to evaluate the genotoxic and the genoprotective potential of phytoestrogens. Only studies written in English and intended to study commercially available phytoestrogens were included. The screening was performed manually. Moreover, the underlying mechanism of action of phytoestrogens was described. Around half of those studies (43%) reported genoprotective results. However, several studies revealed positive results for genotoxicity with specific model organisms and with dose/concentration dependence. The assessment of the selected articles showed substantial differences in the used concentrations and a biphasic response was recorded in some phytoestrogens. As far as we know, this is the first study to assess the genotoxic and genoprotective effects of phytoestrogens systematically.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Zhao Q, Liu Y, Wang X, Zhu Y, Jiao Y, Bao Y, Shi W. Cuscuta chinensis flavonoids reducing oxidative stress of the improve sperm damage in bisphenol A exposed mice offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114831. [PMID: 36966614 DOI: 10.1016/j.ecoenv.2023.114831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor, and overexposure is a threat to male reproduction. Although studies have confirmed that BPA exposure causes a decrease in sperm quality in offspring, the dosage used, and the underlying mechanism is not clear. The purpose of this study is to investigate whether Cuscuta chinensis flavonoids (CCFs) can antagonize or alleviate BPA-induced reproductive injury by analyzing the processes associated with BPA's impairment of sperm quality. BPA and 40 mg/kg bw/day of CCFs were administered to the dams at gestation day (GD) 0.5-17.5. Testicles and serum of male mice are collected on postnatal day 56 (PND56), and spermatozoa are collected to detect relevant indicators. Our results showed that compared with the BPA group, CCFs could significantly increase the serum contents of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T) in males at PND 56, as well as the transcription levels of estrogen receptor alpha (ERα), steroidogenic acute regulatory protein (StAR) and Cytochrome P450 family 11, subfamily A, and member 1 (CYP11A1). CCFs also significantly inhibit the production of reactive oxygen species (ROS), reduce oxidative stress, increase mitochondrial membrane potential, and reduce sperm apoptosis. It also has a certain regulatory effect on sperm telomere length and mitochondrial DNA copy number. These results suggest that CCFs can increase reproductive hormone and receptor levels in adult males by regulating the expression of oxidative stress correlated factors, and ultimately mitigate the negative effects of BPA on sperm quality in male mice.
Collapse
Affiliation(s)
- Qianhui Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yulan Jiao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China; Ruipu (Baoding) Biological Pharmaceutical Co., Ltd., Baoding 071000, China
| | - Yongzhan Bao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China.
| |
Collapse
|
4
|
Selvaraj S, Inbasekar C, Pandurangan S, Nishter NF. Collagen-coated silk fibroin nanofibers with antioxidants for enhanced wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:35-52. [PMID: 35892281 DOI: 10.1080/09205063.2022.2106707] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silk fibroin nanofibers find broader applications in skin tissue engineering as wound dressings. In this study, we have prepared biocompatible collagen-coated silk fibroin nanofibers with two small molecules: sinomenine hydrochloride (SH) and kaempferol hydrate (KH) with bioactive properties for wound healing applications. The prepared nanofibrous scaffolds were characterized via different experimental techniques and the biocompatibility of the nanofibrous scaffolds was assessed using MTT assay and live/dead cell assay. The wound healing potential of the nanofibrous scaffolds was evaluated through in vivo animal model. Notably, the collagen-coated scaffolds showed improved biocompatibility and fibroblast viability over the uncoated scaffolds. The collagen-coated silk nanofibers containing KH showed good antioxidant properties and promoted wound healing in in vivo studies by minimizing inflammation and enhancing collagen deposition. Thus, the incorporation of antioxidant molecules along with collagen coating enhanced the wound healing efficiency of silk nanofibers.
Collapse
Affiliation(s)
- Sowmya Selvaraj
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Chandrasekar Inbasekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry and Biotechnology Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Nishad Fathima Nishter
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| |
Collapse
|
5
|
Chen Y, Bi F, Sun Z. A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia. PLoS One 2021; 16:e0252906. [PMID: 34153045 PMCID: PMC8216565 DOI: 10.1371/journal.pone.0252906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
Oligoasthenozoospermia is a complex disease caused by a variety of factors, and its incidence is increasing yearly worldwide. Yishen Tongluo formula (YSTLF), created by Professor Sun Zixue, has been used to treat oligoasthenozoospermia in clinical practice for several decades with a good therapeutic effect. However, the chemical and pharmacological profiles of YSTLF remain unclear and need to be elucidated. In this study, a network pharmacology approach was applied to explore the potential mechanisms of YSTLF in oligoasthenozoospermia treatment. All of the compounds in YSTLF were retrieved from the corresponding databases, and the bioactive ingredients were screened according to their oral bioavailability (OB) and drug-likeness (DL). The potential proteins of YSTLF were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, while the potential genes of oligoasthenozoospermia were obtained from the GeneCards database and the DisGeNET database. The STRING database was used to construct an interaction network according to the common targets identified by the online tool Venny for YSTLF and oligoasthenozoospermia. The topological characteristics of nodes were visualized and analyzed through Cytoscape. Biological functions and significant pathways were determined and analyzed using the Gene Ontology (GO) knowledgebase, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Metascape. Finally, the disease-formula-compound-target-pathway network was constructed by Cytoscape. A total of 106 bioactive ingredients and 134 potential targets from YSTLF were associated with oligoasthenozoospermia or considered to be therapeutically relevant. Pathway analysis indicated that the PI3K/Akt, MAPK and apoptosis signaling pathways were significant pathways involved in oligoasthenozoospermia. In conclusion, the current study expounded the pharmacological actions and molecular mechanisms of YSTLF in treating oligoasthenozoospermia from a holistic viewpoint. The potential molecular mechanisms were closely related to antioxidative stress, antiapoptosis and anti-inflammation, with TNF, CCND1, ESR1, NFKBIA, NR3C1, MAPK8, and IL6 being possible targets. This network pharmacology prediction may offer a helpful tool to illustrate the molecular mechanisms of the Chinese herbal compound YSTLF in oligoasthenozoospermia treatment.
Collapse
Affiliation(s)
- Yangdi Chen
- Henan University of Chinese Medicine, Zhengzhou, Henan, P. R. China
| | - Fanggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Zixue Sun
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, P. R. China
- * E-mail:
| |
Collapse
|
6
|
Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids. Fitoterapia 2020; 147:104756. [PMID: 33069836 DOI: 10.1016/j.fitote.2020.104756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Male infertility has affected many families around the world. However, due to the mechanism underlying male reproductive system dysfunction are not completely elucidated, the use of drugs for male reproductive system dysfunction treatment only insignificant higher pregnancy outcomes, low-quality evidence suggests that clinical pregnancy rates may increase. Therefore, the focus in the future will be on developing more viable treatment options to prevent or treatment of male reproductive system dysfunction and achieve the purpose of improving fertility. Interestingly, natural products, as the potential inhibitors for the treatment of male reproductive system dysfunction, have shown a good therapeutic effect. Among many natural products, flavonoids have been extensively investigated for the treatment of male reproductive system dysfunction, such as testicular structural disruption, spermatogenesis disturbance and sperm quality decline. Flavonoids have been reported to have antioxidant, anti-inflammatory, immune stimulating, anti-apoptotic, anticarcinogenic, anti-allergic and antiviral activities, investigating for the treatment of male reproductive system dysfunction. In this review, we evaluate the therapeutic effects of flavonoids on male reproductive system dysfunction under different cellular scenarios and summarize the therapeutic strategies of flavonoids based on the aforementioned retrospective analysis. In the end, we describe some perspective research areas relevant to the application of flavonoids in the treatment of male reproductive system dysfunction.
Collapse
|
7
|
Flavonoid Treatment of Breast Cancer Cells has Multifarious Consequences on Alpha-1-Syntrophin Expression and other Downstream Processes. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Ali M, Martinez M, Parekh N. Are antioxidants a viable treatment option for male infertility? Andrologia 2020; 53:e13644. [PMID: 32427374 DOI: 10.1111/and.13644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is caused by an imbalance between ROS and antioxidants, which plays a significant role in the pathophysiology of many human diseases. There is extensive evidence highlighting the role of oxidative stress in male infertility due to elevated levels of sperm DNA fragmentation and abnormal semen parameters. The use of antioxidants is a potential therapeutic option to reduce ROS and improve semen quality. The appeal is that antioxidants can be easily obtained over the counter and are considered all-natural and therefore healthy. The hypothesis has been that by decreasing oxidative stress, antioxidants may be used for the treatment of male infertility. While initial studies of antioxidant supplementation suggested a beneficial role in the management of male subfertility, additional research has questioned the benefit of these therapies. The focus of this article is to present recent evidence assessing the viability of antioxidant therapy in the treatment of male infertility.
Collapse
Affiliation(s)
- Marwan Ali
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marlon Martinez
- Department of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
9
|
DNA-BINDING and DNA-protecting activities of small natural organic molecules and food extracts. Chem Biol Interact 2020; 323:109030. [PMID: 32205154 DOI: 10.1016/j.cbi.2020.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
The review summarizes literature data on the DNA-binding, DNA-protecting and DNA-damaging activities of a range of natural human endogenous and exogenous compounds. Small natural organic molecules bind DNA in a site-specific mode, by arranging tight touch with the structure of the major and minor grooves, as well as individual bases in the local duplex DNA. Polyphenols are the best-studied exogenous compounds from this point of view. Many of them demonstrate hormetic effects, producing both beneficial and damaging effects. An attempt to establish the dependence of DNA damage or DNA protection on the concentration of the compound turned out to be successful for some polyphenols, daidzein, genistein and resveratrol, which were DNA protecting in low concentrations and DNA damaging in high concentrations. There was no evident dependence on concentration for quercetin and kaempferol. Probably, the DNA-protecting effect is associated with the affinity to DNA. Caffeine and theophylline are DNA binders; at the same time, they favor DNA repair. Although most alkaloids damage DNA, berberine can protect DNA against damage. Among the endogenous compounds, hormones belonging to the amine class, thyroid and steroid hormones appear to bind DNA and produce some DNA damage. Thus, natural compounds continue to reveal beneficial or adverse effects on genome integrity and provide a promising source of therapeutic activities.
Collapse
|
10
|
Assessment of adrenaline-induced DNA damage in whole blood cells with the comet assay. Arh Hig Rada Toksikol 2019; 69:304-308. [PMID: 30864376 DOI: 10.2478/aiht-2018-69-3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/01/2018] [Indexed: 02/04/2023] Open
Abstract
Harmful effects of elevated levels of catecholamines are mediated by various mechanisms, including gene transcription and formation of oxidation products. The aim of this study was to see whether the molecular mechanisms underlying the damaging action of adrenaline on DNA are mediated by reactive oxygen species (ROS). To do that, we exposed human whole blood cells to 10 μmol L-1adrenaline or 50 μmol L-1H2O2(used as positive control) that were separately pre-treated or post-treated with 500 μmol L-1of quercetin, a scavenger of free radicals. Quercetin significantly reduced DNA damage in both pre- and post-treatment protocols, which suggests that adrenaline mainly acts via the production of ROS. This mechanism is also supported by gradual lowering of adrenaline and H2O2-induced DNA damage 15, 30, 45, and 60 min after treatment. Our results clearly show that DNA repair mechanisms are rather effective against ROS-mediated DNA damage induced by adrenaline.
Collapse
|
11
|
Wang L, Li X, Mi L, Shen X, Feng T, Liu X, Wang Q. Study on pharmacokinetics, tissue distribution, and excretion of phloretin and its prodrug 2′,4′,6′,4-Tetra-O-acetylphloretin in rats using LC–MS/MS. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Libin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Medical University of the Air Force, Xi'an, China
| | - Xi Li
- Department of Pharmacy, Tangdu Hospital, Medical University of the Air Force, Xi'an 710038, China
| | - Le Mi
- Department of Medicinal Chemistry, School of Pharmacy, Medical University of the Air Force, Xi'an, China
| | - Xin Shen
- Department of Medicinal Chemistry, School of Pharmacy, Medical University of the Air Force, Xi'an, China
| | - Tian Feng
- Department of Medicinal Chemistry, School of Pharmacy, Medical University of the Air Force, Xi'an, China
| | - Xueying Liu
- Department of Medicinal Chemistry, School of Pharmacy, Medical University of the Air Force, Xi'an, China
| | - Qingwei Wang
- Department of Pharmacy, Tangdu Hospital, Medical University of the Air Force, Xi'an 710038, China
| |
Collapse
|
12
|
Topalović D, Dekanski D, Spremo-Potparević B, Pirković A, Borozan S, Bajić V, Stojanović D, Giampieri F, Gasparrini M, Živković L. Dry olive leaf extract attenuates DNA damage induced by estradiol and diethylstilbestrol in human peripheral blood cells in vitro. Mutat Res 2018; 845:402993. [PMID: 31561897 DOI: 10.1016/j.mrgentox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/06/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
Phenolic groups of steroidal or nonsteroidal estrogens can redox cycle, leading to oxidative stress, where creation of reactive oxygen species are recognized as the main mechanism of their DNA damage properties. Dry olive (Olea europaea L.) leaf extract is known to contain bioactive and antioxidative components and to have an ability to modulate the effects of various oxidants in cells. The main goal of this study was to investigate antigenotoxic potential of a standardized dry olive leaf extract on DNA damage induced by 17β-estradiol and diethylstilbestrol in human whole blood cells in vitro, using comet assay. Our results indicated that both hormones showed a genotoxic effect at a concentration of 100 μM (P < 0.05, n = 6). Dry olive leaf extract was efficient in reducing number of cells with estrogen-induced DNA damage at tested concentrations (0.125, 0.5 and 1 mg/mL) (P < 0.05, n = 6) and under two experimental protocols, pre-treatment and post-treatment, exhibiting antigenotoxic properties. Analysis of antioxidant properties of the extract revealed moderate ABTS radical scavenging properties and reducing power. Overall, our results suggested that the protective potential of dry olive leaf extract could arise from the synergistic effect of its scavenging activity and enhancement of the cells' antioxidant capacity.
Collapse
Affiliation(s)
- Dijana Topalović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Dragana Dekanski
- Biomedical Research, R&D Institute, Galenika a.d., Pasterova 2, 11000 Belgrade, Serbia.
| | - Biljana Spremo-Potparević
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Andrea Pirković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Vladan Bajić
- The Laboratory for Radiobiology and Molecular Genetics, Institute for Nuclear Research "Vinča", University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia.
| | - Danilo Stojanović
- Department of Botany, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Science, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Massimiliano Gasparrini
- Department of Odontostomatologic and Specialized Clinical Science, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| |
Collapse
|
13
|
Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants (Basel) 2018; 7:antiox7100133. [PMID: 30282925 PMCID: PMC6211048 DOI: 10.3390/antiox7100133] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Radical oxygen species formed in human tissue cells by many endogenous and exogenous pathways cause extensive oxidative damage which has been linked to various human diseases. This review paper provides an overview of lipid peroxidation and focuses on the free radicals-initiated processes of low-density lipoprotein (LDL) oxidative modification and DNA oxidative damage, which are widely associated with the initiation and development of atherosclerosis and carcinogenesis, respectively. The article subsequently provides an overview of the recent human trials or even in vitro investigations on the potential of natural antioxidant compounds (such as carotenoids; vitamins C and E) to monitor LDL and DNA oxidative changes.
Collapse
Affiliation(s)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
| | - Vassilki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou 9, 15780 Athens, Greece.
| |
Collapse
|
14
|
Živković L, Bajić V, Dekanski D, Čabarkapa-Pirković A, Giampieri F, Gasparrini M, Mazzoni L, Potparević BS. Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. Food Chem Toxicol 2018; 119:61-65. [DOI: 10.1016/j.fct.2018.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023]
|
15
|
Habas K, Brinkworth MH, Anderson D. Diethylstilbestrol induces oxidative DNA damage, resulting in apoptosis of spermatogonial stem cells in vitro. Toxicology 2017; 382:117-121. [PMID: 28315349 DOI: 10.1016/j.tox.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/19/2017] [Accepted: 03/11/2017] [Indexed: 01/28/2023]
Abstract
) in SSCs was detected using p-Nitro Blue Tetrazolium (NBT) assay. The viability of cells after DES treatment was examined in the CCK8 (cell counting kit-8) cytotoxicity assay. The results showed that DES-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the flavonoid, quercetin. Investigating the molecular mechanisms and biology of SSCs provides a better understanding of spermatogonial stem cell regulation in the testis.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK
| | - Martin H Brinkworth
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
16
|
Simulating hypoxia-induced acidic environment in cancer cells facilitates mobilization and redox-cycling of genomic copper by daidzein leading to pro-oxidant cell death: implications for the sensitization of resistant hypoxic cancer cells to therapeutic challenges. Biometals 2016; 29:299-310. [DOI: 10.1007/s10534-016-9916-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 01/30/2023]
|
17
|
Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. Int J Mol Sci 2015; 16:26754-69. [PMID: 26569217 PMCID: PMC4661851 DOI: 10.3390/ijms161125992] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022] Open
Abstract
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.
Collapse
|
18
|
Farhan M, Zafar A, Chibber S, Khan HY, Arif H, Hadi SM. Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: A structure activity study. Arch Biochem Biophys 2015; 580:31-40. [PMID: 26142371 DOI: 10.1016/j.abb.2015.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
Epidemiological studies suggest that dietary consumption of plant polyphenols is related to a lower incidence of various cancers. Among these compounds catechins (present in green tea and other beverages) are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. Thus these compounds can be used as leads to synthesize novel anticancer drugs with greater bioavailability. In view of this in this paper we have examined the chemical basis of cytotoxicity of catechins by studying the structure-activity relationship between catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG). Using single cell alkaline gel electrophoresis (comet assay) we have established the relative efficiency of cellular DNA breakage as EGCG>EGC>EC>C. We also show that cellular DNA breakage is the result of mobilization of copper ions bound to chromatin and the generation of reactive oxygen species. Further the relative DNA binding affinity order was confirmed using molecular docking and thermodynamic studies by studying the interaction of catechins with calf thymus DNA. The results suggest that the synthesis of any novel anti cancer molecule based on the structure of catechins should have as many galloyl moieties as possible resulting in an increased number of hydroxyl groups that may facilitate the binding of the molecule to cellular DNA.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sandesh Chibber
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Husain Yar Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - S M Hadi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Mancini A, Raimondo S, Persano M, Di Segni C, Cammarano M, Gadotti G, Silvestrini A, Pontecorvi A, Meucci E. Estrogens as antioxidant modulators in human fertility. Int J Endocrinol 2013; 2013:607939. [PMID: 24363671 PMCID: PMC3863713 DOI: 10.1155/2013/607939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022] Open
Abstract
Among treatments proposed for idiopathic male infertility, antiestrogens, like tamoxifen, play a possible role. On the other hand, oxidative stress is a mechanism well recognized for deleterious effects on spermatozoa function. After reviewing the literature on the effects of estrogens in modulation of antioxidant systems, in both sexes, and in different in vivo and in vitro models, we suggest, also on the basis of personal data, that a tamoxifen treatment could be active via an increase in seminal antioxidants.
Collapse
Affiliation(s)
- A. Mancini
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
- *A. Mancini:
| | - S. Raimondo
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - M. Persano
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - C. Di Segni
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - M. Cammarano
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - G. Gadotti
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Pontecorvi
- Division of Endocrinology, Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - E. Meucci
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
20
|
Mata-Campuzano M, Álvarez-Rodríguez M, del Olmo E, Fernández-Santos M, Garde J, Martínez-Pastor F. Quality, oxidative markers and DNA damage (DNA) fragmentation of red deer thawed spermatozoa after incubation at 37 °C in presence of several antioxidants. Theriogenology 2012; 78:1005-19. [DOI: 10.1016/j.theriogenology.2011.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 12/09/2011] [Indexed: 11/27/2022]
|
21
|
Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y, Cao L, Yang ZH, Sun XB. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 2012; 113:473-85. [PMID: 21948481 DOI: 10.1002/jcb.23371] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.
Collapse
Affiliation(s)
- Bing Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gopalan RC, Emerce E, Wright CW, Karahalil B, Karakaya AE, Anderson D. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay. Toxicol Lett 2011; 207:322-5. [DOI: 10.1016/j.toxlet.2011.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
23
|
Mechanistic investigation of ROS-induced DNA damage by oestrogenic compounds in lymphocytes and sperm using the comet assay. Int J Mol Sci 2011; 12:2783-96. [PMID: 21686150 PMCID: PMC3116156 DOI: 10.3390/ijms12052783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 01/20/2023] Open
Abstract
Past research has demonstrated that oestrogenic compounds produce strand breaks in the DNA of sperm and lymphocytes via reactive oxygen species (ROS). In the current investigation, sperm and lymphocytes were treated in vitro with oestrogenic compounds (diethylstilboestrol, progesterone, 17β-oestradiol, noradrenaline and triiodotyronine) and several aspects of DNA damage were investigated. Firstly, mediation of DNA damage by lipid peroxidation was investigated in the presence of BHA (a lipid peroxidation blocker). BHA reduced the DNA damage generated by 17β-oestradiol and diethylstilboestrol in a statistically significant manner. No effects were observed for sperm. Secondly, the presence of oxidized bases employing FPG and EndoIII were detected for lymphocytes and sperm in the negative control and after 24 h recovery in lymphocytes but not immediately after treatment for both cell types. The successful detection of oxidized bases in the negative control (untreated) of sperm provides an opportunity for its application in biomonitoring studies. DNA repair at 24 h after exposure was also studied. A nearly complete recovery to negative control levels was shown in lymphocytes 24 h recovery after oestrogenic exposure and this was statistically significant in all cases. Rapid rejoining of DNA, in a matter of hours, is a characteristic of DNA damaged by ROS.
Collapse
|
24
|
Zini A, Al-Hathal N. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl 2011; 13:374-81. [PMID: 21516118 DOI: 10.1038/aja.2010.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Infertile men have higher levels of semen reactive oxygen species (ROS) than do fertile men. High levels of semen ROS can cause sperm dysfunction, sperm DNA damage and reduced male reproductive potential. This observation has led clinicians to treat infertile men with antioxidant supplements. The purpose of this article is to discuss the rationale for antioxidant therapy in infertile men and to evaluate the data on the efficacy of dietary and in vitro antioxidant preparations on sperm function and DNA damage. To date, most clinical studies suggest that dietary antioxidant supplements are beneficial in terms of improving sperm function and DNA integrity. However, the exact mechanism of action of dietary antioxidants and the optimal dietary supplement have not been established. Moreover, most of the clinical studies are small and few have evaluated pregnancy rates. A beneficial effect of in vitro antioxidant supplements in protecting spermatozoa from exogenous oxidants has been demonstrated in most studies; however, the effect of these antioxidants in protecting sperm from endogenous ROS, gentle sperm processing and cryopreservation has not been established conclusively.
Collapse
Affiliation(s)
- Armand Zini
- Division of Urology, Department of Surgery, Royal Victoria Hospital, McGill University, Montreal, Que. H3T 1M5, Canada.
| | | |
Collapse
|
25
|
Mancini A, Festa R, Di Donna V, Leone E, Littarru GP, Silvestrini A, Meucci E, Pontecorvi A. Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes. J Endocrinol Invest 2010; 33:422-33. [PMID: 20631494 DOI: 10.1007/bf03346615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a condition defined as unbalancing between production of free radicals and antioxidant defenses, is an important pathogenetic mechanism in different diseases. Despite the abundant literature, many aspects of hormone role in regulating antioxidant synthesis and activity still remain obscure. Therefore, we reviewed experimental data, in vivo and in vitro, about the effects of the different pituitary- dependent axes on antioxidant levels, trying to give a broad view from hormones which also have antioxidant properties to the classic antioxidants, from the lipophilic antioxidant Coenzyme Q10, strictly related to thyroid function, to total antioxidant capacity, a measure of non-protein non-enzymatic antioxidants in serum and other biological fluids. Taken together, these data underline the importance of oxidative stress in various pituitary-dependent disorders, suggesting a possible clinical usefulness of antioxidant molecules.
Collapse
Affiliation(s)
- A Mancini
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martinez-Soto JC, de DiosHourcade J, Gutiérrez-Adán A, Landeras JL, Gadea J. Effect of genistein supplementation of thawing medium on characteristics of frozen human spermatozoa. Asian J Androl 2010; 12:431-41. [PMID: 20173768 DOI: 10.1038/aja.2009.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study, we evaluated the effects of genistein supplementation of the thawing extender on frozen-thawed human semen parameters. We analyzed the effect of supplementation on sperm motility, capacitation (membrane lipid disorder), reactive oxygen species (ROS) generation, chromatin condensation and DNA damage. Using this preliminary information, it maybe possible to improve the cryopreservation process and reduce the cellular damage. We have confirmed that the isoflavone genistein (10 micromol L(-1)) has antioxidant properties on the frozen-thawed spermatozoa. This results in a decreased ROS production that shows a slight improvement in the sperm motility, and decreases the membrane lipid disorder and DNA damage caused by cryopreservation. These results suggest an effect of genistein on sperm functionality that could be of interest for assisted reproduction treatments using frozen-thawed human spermatozoa, but further studies will be necessary to confirm our findings and to evaluate the possible clinical applications.
Collapse
|
27
|
Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 2009; 26:427-32. [PMID: 19768529 DOI: 10.1007/s10815-009-9343-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/31/2009] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Infertile men possess substantially more sperm DNA damage than do fertile men, damage that may impact negatively on reproductive outcomes. In this era of assisted reproductive technologies there is mounting concern regarding the safety of utilizing DNA-damaged spermatozoa in this setting. Therefore, it is important to identify strategies that may reduce sperm DNA damage. The purpose of this review is to discuss the rationale for antioxidant therapy in men with sperm DNA damage and to evaluate the data on the efficacy of dietary and in vitro antioxidant preparations on sperm DNA damage. METHODS We reviewed the literature on antioxidants and sperm DNA damage. RESULTS To date, the data suggest that dietary antioxidants may be beneficial in reducing sperm DNA damage, particularly, in men with high levels of DNA fragmentation. However, the mechanism of action of dietary antioxidants has not been established and most of the clinical studies are small. A beneficial effect of in vitro antioxidant supplements in protecting sperm DNA from exogenous oxidants has been demonstrated, however, the effect of these antioxidants in protecting sperm from endogenous ROS, gentle sperm processing and cryopreservation has not been established.
Collapse
Affiliation(s)
- Armand Zini
- Division of Urology, Department of Surgery, Royal Victoria Hospital, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
28
|
Gil-Villa AM, Cardona-Maya W, Agarwal A, Sharma R, Cadavid Á. Role of male factor in early recurrent embryo loss: do antioxidants have any effect? Fertil Steril 2009; 92:565-71. [DOI: 10.1016/j.fertnstert.2008.07.1715] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/23/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|
29
|
Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D. The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 2009. [DOI: 10.1080/17435390802596456] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Amir Amani
- Institute of Pharmaceutical Innovation, Bradford, UK
- Department of Nanomedicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
30
|
Ullah MF, Shamim U, Hanif S, Azmi AS, Hadi SM. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Mol Nutr Food Res 2009; 53:1376-85. [DOI: 10.1002/mnfr.200800547] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Tucker G, Robards K. Bioactivity and structure of biophenols as mediators of chronic diseases. Crit Rev Food Sci Nutr 2009; 48:929-66. [PMID: 18949595 DOI: 10.1080/10408390701761977] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biophenols and their associated activity have generated intense interest. Current topics of debate are their bioavailability and bioactivity. It is generally assumed that their plasma concentrations are insufficient to produce the health benefits previously attributed to their consumption. However, data on localized in vivo concentrations are not available and many questions remain unanswered. Potential mechanisms by which they may exert significant bioactivity are discussed together with structure activity relationships. Biophenols are highly reactive species and they can react with a range of other compounds. Products of their reaction when functioning as antioxidants are examined.
Collapse
Affiliation(s)
- Gregory Tucker
- School of Biosciences, University of Nottingham, Loughborough, Leics, UK
| | | |
Collapse
|
32
|
Mishra KP, Chanda S, Karan D, Ganju L, Sawhney RC. Effect of Seabuckthorn (Hippophae rhamnoides) flavone on immune system: anin-vitroapproach. Phytother Res 2008; 22:1490-5. [DOI: 10.1002/ptr.2518] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Dzeha T, Wende K, Harms M, Wilson JJ(B, Kohen J, Vemulpad S, Jamie J, Lindequist U. Phytochemical Characterization of the Australian (Aboriginal) Medicinal Plant Dolichandrone heterophylla and Influence of Selected Isolated Compounds on Human Keratinocytes. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Miriwoong Aboriginal people of Eastern Kimberley, Western Australia use the leaves and bark of Dolichandrone heterophylla (R. Br.) F. Muell., Bigoniaceae, to treat sores, rashes, grazes, scabies, boils and wounds. Bioassay guided fractionation of an aqueous extract of the leaves and twigs led to the isolation of the known compounds caffeic acid, the phenylethanoids isoacteoside (1) and acteoside (2), and the flavonoids chrysoeriol and luteolin. The structures of these compounds were determined using mass spectrometric and 1D- and 2D-NMR spectroscopic data and verified by comparison with those in the literature. Studies of the effect of isoacteoside (1) and chrysoeriol on HaCaT keratinocytes using the MTT assay revealed that chrysoeriol had growth inhibitory properties towards the cell line in a dose dependent manner (IC50 = 31 μM) whereas 1 was well tolerated up to 50 μM. On the other hand, 1 inhibited the growth of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Thomas Dzeha
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Kristian Wende
- Institute of Pharmacy, Pharmaceutical Biology, Ernst Moritz Arndt Universität Greifswald, Fr.-Ludwig-Jahn-Straße 17, D-17487 Greifswald, Germany
| | - Manuela Harms
- Institute of Pharmacy, Pharmaceutical Biology, Ernst Moritz Arndt Universität Greifswald, Fr.-Ludwig-Jahn-Straße 17, D-17487 Greifswald, Germany
| | | | - Jim Kohen
- Department of Biology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Subra Vemulpad
- Department of Health and Chiropractic, Macquarie University, North Ryde, NSW 2109, Australia
| | - Joanne Jamie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology, Ernst Moritz Arndt Universität Greifswald, Fr.-Ludwig-Jahn-Straße 17, D-17487 Greifswald, Germany
| |
Collapse
|
34
|
Vijayaraghavan R, Gautam A, Sharma M, Satish HT, Pant SC, Ganesan K. Comparative evaluation of some flavonoids and tocopherol acetate against the systemic toxicity induced by sulphur mustard. Indian J Pharmacol 2008; 40:114-20. [PMID: 20040938 PMCID: PMC2792600 DOI: 10.4103/0253-7613.42304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 05/02/2008] [Accepted: 06/21/2008] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To evaluate the protective value of quercetin, gossypin, Hippophae rhamnoides (HR) flavone and tocopherol acetate against the systemic toxicity of percutaneously administered sulphur mustard (SM) in mice. MATERIALS AND METHODS Quercetin, gossypin, HR flavone or tocopherol acetate (200 mg/kg, i.p.) were administered just before percutaneous administration of SM and protection against the SM lethality was evaluated. In another experiment quercetin, gossypin, HR flavone or tocopherol acetate were administered against 2 LD(50) SM. The animals were sacrificed seven days post SM administration and various biochemical parameters were estimated. RESULTS The protection against the lethality of SM was very good with the flavonoids (quercetin = 4.7 folds; gossypin = 6.7 folds and HR flavone = 5.6 folds), compared to no protection with tocopherol acetate (0.7 fold). SM (2 LD(50)) showed decrease in reduced and oxidised glutathione (GSH and GSSG) levels, and an increase in malondialdehyde level (MDA). Oxidative stress enzymes like glutathione peroxidase, glutathione reductase and superoxide dismutase were significantly decreased. The total antioxidant status was also significantly decreased. Additionally, there was a significant increase in red blood corpuscles and hemoglobin content. All the flavonoids significantly protected the GSH, GSSG and MDA, and also the hematological variables. Tocopherol acetate failed to offer any protection in those parameters. Gossypin protected glutathione peroxidase, while HR flavone protected both glutathione reductase and glutathione peroxidase significantly. The decrease in body weight induced by SM and the histological lesions in liver and spleen were also significantly protected by the flavonoids but not by tocopherol acetate. CONCLUSION The present study supports that SM induces oxidative stress and flavonoids are promising cytoprotectants against this toxic effect.
Collapse
Affiliation(s)
- R Vijayaraghavan
- Defense Research and Development Establishment, Jhansi Road, Gwalior - 474 002, India
| | | | | | | | | | | |
Collapse
|
35
|
Hosseinimehr SJ, Azadbakht M, Abadi AJ. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:51-56. [PMID: 21783835 DOI: 10.1016/j.etap.2007.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 08/04/2007] [Accepted: 08/27/2007] [Indexed: 05/31/2023]
Abstract
The preventive effect of hawthorn (Crataegus microphylla) fruit extract was investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were orally (gavages) pretreated with solutions of hawthorn extract which was prepared at five different doses (25, 50, 100, 200 and 400mg/kg b.w.) for seven consecutive days. Mice were injected intraperitoneally on the seventh day with cyclophosphamide (50mg/kg b.w.) and killed after 24h for the evaluation of micronucleated polychromatic erythrocytes (MnPCEs) and the ratio of PCE/(PCE+NCE) (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte). All of five doses of extract significantly reduced MnPCEs induced by cyclophosphamide (P<0.0001). Hawthorn extract at dose 100mg/kg b.w. reduced MnPCEs 2.5 time and also completely normalized PCE/(PCE+NCE) ratio. Hawthorn extract exhibited concentration-dependent antioxidant activity on 1,1-diphenyl-2-picryl hydrazyl free radical. Hawthorn contains high amounts of phenolic compounds; the HPLC analysis showed that it contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by cyclophosphamide in mouse bone marrow cells.
Collapse
Affiliation(s)
- Seyed Jalal Hosseinimehr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
36
|
Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology. Cell Biol Toxicol 2007; 25:81-98. [PMID: 17972149 DOI: 10.1007/s10565-007-9041-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/03/2007] [Indexed: 01/23/2023]
Abstract
Due to our lifestyle and the environment we live in, we are constantly confronted with genotoxic or potentially genotoxic compounds. These toxins can cause DNA damage to our cells, leading to an increase in mutations. Sometimes such mutations could give rise to cancer in somatic cells. However, when germ cells are affected, then the damage could also have an effect on the next and successive generations. A rapid, sensitive and reliable method to detect DNA damage and assess the integrity of the genome within single cells is that of the comet or single-cell gel electrophoresis assay. The present communication gives an overview of the use of the comet assay utilising sperm or testicular cells in reproductive toxicology. This includes consideration of damage assessed by protocol modification, cryopreservation vs the use of fresh sperm, viability and statistics. It further focuses on in vivo and in vitro comet assay studies with sperm and a comparison of this assay with other assays measuring germ cell genotoxicity. As most of the de novo structural aberrations occur in sperm and spermatogenesis is functional from puberty to old age, whereas female germ cells are more complicated to obtain, the examination of male germ cells seems to be an easier and logical choice for research and testing in reproductive toxicology. In addition, the importance of such an assay for the paternal impact of genetic damage in offspring is undisputed. As there is a growing interest in the evaluation of genotoxins in male germ cells, the comet assay allows in vitro and in vivo assessments of various environmental and lifestyle genotoxins to be reliably determined.
Collapse
Affiliation(s)
- A Baumgartner
- Division of Biomedical Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Modern consumer needs have stimulated a vast expansion in the dietary supplement market, in an attempt to improve general well being and prevent, rather than cure, disease. Isoflavones form a large part of this market. Their oestrogenic properties are still largely unknown and must be thoroughly researched to ensure they cause no adverse effects, particularly on hormone-dependent reproductive physiology. RECENT FINDINGS As a result of the increasing availability of phytoestrogens, research into their actions now covers a very wide field, many of which impact on reproductive potential. Time of exposure is crucial, as is interaction with other dietary components. Their putative role as chemoprotective agents has been expanded in recent years which may have an indirect impact on fertility by decreasing mortality rates in both men and women. SUMMARY Phytoestrogens are still a current research topic in reproduction and fertility. Genistein is a putative therapeutic tool in cancer treatment although this must be considered along with evidence that it may cause DNA damage in sperm, depending on the concentration. The effects of phytoestrogen in the body are not limited to oestrogenic action. Much more epidemiological data are required to interpret current molecular studies, and those of previous years.
Collapse
|
38
|
Lee ER, Kang YJ, Kim JH, Lee HT, Cho SG. Modulation of Apoptosis in HaCaT Keratinocytes via Differential Regulation of ERK Signaling Pathway by Flavonoids. J Biol Chem 2005; 280:31498-507. [PMID: 16014620 DOI: 10.1074/jbc.m505537200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exact molecular mechanisms underlying the cellular effects associated with various flavonoids have yet to be fully explained. In the present study, we have administered several flavonoids to human HaCaT keratinocytes and determined that 3,4'-dihydroxy flavone (3,4'-DHF) exerts a slight stimulatory effect on cell growth, although other flavonoids, including kaempferol, quercetin, and isorhamnetin, exhibited growth inhibitory properties. 3,4'-DHF was found to exert an anti-apoptotic effect on etoposide-induced cell death of HaCaT keratinocytes. We were also able to determine that sustained ERK activation was intimately associated with the etoposide-induced apoptosis of HaCaT cells, and treatment with 3,4'-DHF induced a significant suppression of etoposide-induced ERK activation, concomitant with the repression of poly(ADP-ribose) polymerase or the cleavage of pro-caspase 3. ERK overexpression significantly overrode the anti-apoptotic function of 3,4'-DHF, but this was not true of ERK-DN. Moreover, treatment with 3,4'-DHF resulted in the protection of cells from H2O2-induced cell death and exerted an apparent suppressive effect on the stress-induced generation of reactive oxygen species (ROS). Finally, we showed that 3,4'-DHF almost completely abolished kaempferol-induced apoptosis, coupled with a concomitant suppression of both intracellular ROS generation and the activation of ERK. Taken together, our data clearly indicate that a host of phytochemicals, including etoposide and a variety of flavonoids, differentially regulate the apoptosis of human HaCaT keratinocytes via the differential modulation of intracellular ROS production, coupled with the concomitant activation of the ERK signaling pathway. According to these results, we are able to conclude the distinct structure-activity relationship between several flavonoids.
Collapse
Affiliation(s)
- Eung-Ryoung Lee
- Department of Animal Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | | | | | | | | |
Collapse
|
39
|
Stopper H, Schmitt E, Kobras K. Genotoxicity of phytoestrogens. Mutat Res 2005; 574:139-55. [PMID: 15914213 DOI: 10.1016/j.mrfmmm.2005.01.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 12/15/2004] [Accepted: 01/13/2005] [Indexed: 05/02/2023]
Abstract
Plant extracts containing phytohormones are very popular as 'alternative' medicine for many kinds of diseases. They are especially favored by women who enter menopause and are concerned about the side effects of hormone replacement therapy. However, adverse health effects of phytoestrogens have often been ignored. This review examines the literature on genotoxicity and apoptotic effects of phytohormones. Genistein, coumestrol, quercetin, zearalenone, and resveratrol exerted genotoxic effects in in vitro test systems. Other phytoestrogens such as lignans, the isoflavones daidzein and glycetein, anthocyanidins, and the flavonol fisetin exhibited only weak or no effects in vitro. However, some metabolites of daidzein showed a genotoxic activity in vitro. Practically all of the phytoestrogens exhibit pro-apoptotic effects in some cell systems. Further investigations regarding dose-response-relationships and other aspects relevant for extrapolation to human exposure seem necessary. Until then, care may be advised in taking concentrated phytohormones. Nevertheless, the intake of substantial amounts of plant-food in a normal diet constitutes an important, individual contribution to cancer prevention.
Collapse
Affiliation(s)
- H Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacherstr. 9, D-97078 Würzburg, Germany.
| | | | | |
Collapse
|