The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon.
Biol Direct 2011;
6:16. [PMID:
21356104 PMCID:
PMC3056875 DOI:
10.1186/1745-6150-6-16]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
The tree of life is usually rooted between archaea and bacteria. We have previously presented three arguments that support placing the root of the tree of life in bacteria. The data have been dismissed because those who support the canonical rooting between the prokaryotic superkingdoms cannot imagine how the vast divide between the prokaryotic superkingdoms could be crossed.
RESULTS
We review the evidence that archaea are derived, as well as their biggest differences with bacteria. We argue that using novel data the gap between the superkingdoms is not insurmountable. We consider whether archaea are holophyletic or paraphyletic; essential to understanding their origin. Finally, we review several hypotheses on the origins of archaea and, where possible, evaluate each hypothesis using bioinformatics tools. As a result we argue for a firmicute ancestry for archaea over proposals for an actinobacterial ancestry.
CONCLUSION
We believe a synthesis of the hypotheses of Lake, Gupta, and Cavalier-Smith is possible where a combination of antibiotic warfare and viral endosymbiosis in the bacilli led to dramatic changes in a bacterium that resulted in the birth of archaea and eukaryotes.
REVIEWERS
This article was reviewed by Patrick Forterre, Eugene Koonin, and Gáspár Jékely.
Collapse