1
|
Kowalczyk A, Zarychta J, Lejman M, Latoch E, Zawitkowska J. Clinical Implications of Isocitrate Dehydrogenase Mutations and Targeted Treatment of Acute Myeloid Leukemia with Mutant Isocitrate Dehydrogenase Inhibitors-Recent Advances, Challenges and Future Prospects. Int J Mol Sci 2024; 25:7916. [PMID: 39063158 PMCID: PMC11276768 DOI: 10.3390/ijms25147916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the better understanding of the molecular mechanisms contributing to the pathogenesis of acute myeloid leukemia (AML) and improved patient survival in recent years, AML therapy still remains a clinical challenge. For this reason, it is important to search for new therapies that will enable the achievement of remission. Recently, the Food and Drug Administration approved three mutant IDH (mIDH) inhibitors for the treatment of AML. However, the use of mIDH inhibitors in monotherapy usually leads to the development of resistance and the subsequent recurrence of the cancer, despite the initial effectiveness of the therapy. A complete understanding of the mechanisms by which IDH mutations influence the development of leukemia, as well as the processes that enable resistance to mIDH inhibitors, may significantly improve the efficacy of this therapy through the use of an appropriate synergistic approach. The aim of this literature review is to present the role of IDH1/IDH2 mutations in the pathogenesis of AML and the results of clinical trials using mIDH1/IDH2 inhibitors in AML and to discuss the challenges related to the use of mIDH1/IDH2 inhibitors in practice and future prospects related to the potential methods of overcoming resistance to these agents.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Sarkies P. Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochem Soc Trans 2022; 50:1179-1190. [PMID: 35521905 PMCID: PMC9246332 DOI: 10.1042/bst20210725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is an epigenetic modification with a very long evolutionary history. However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-wide distribution of methylation diversifies rapidly in different lineages, and DNA methylation is lost altogether surprisingly frequently. The growing availability of genomic and epigenomic sequencing across organisms highlights this diversity but also illuminates potential factors that could explain why both the DNA methylation machinery and its genome-wide distribution evolve so rapidly. Key to this are new discoveries about the fitness costs associated with DNA methylation, and new theories about how the fundamental biochemical mechanisms of DNA methylation introduction and maintenance could explain how new genome-wide patterns of methylation evolve.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, U.K
- MRC London Institute of Molecular Biology, London, U.K
- Institute of Clinical Sciences, Imperial College London, London, U.K
| |
Collapse
|
3
|
Bonilla B, Brown AJ, Hengel SR, Rapchak KS, Mitchell D, Pressimone CA, Fagunloye AA, Luong TT, Russell RA, Vyas RK, Mertz TM, Zaher HS, Mosammaparast N, Malc EP, Mieczkowski PA, Roberts SA, Bernstein KA. The Shu complex prevents mutagenesis and cytotoxicity of single-strand specific alkylation lesions. eLife 2021; 10:e68080. [PMID: 34723799 PMCID: PMC8610418 DOI: 10.7554/elife.68080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.
Collapse
Affiliation(s)
- Braulio Bonilla
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Alexander J Brown
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Sarah R Hengel
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Kyle S Rapchak
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Debra Mitchell
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Catherine A Pressimone
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Adeola A Fagunloye
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Thong T Luong
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Reagan A Russell
- University of Pittsburgh School of MedicinePittsburghUnited States
| | - Rudri K Vyas
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Tony M Mertz
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Hani S Zaher
- Biology, Washington University in St LouisSt. LouisUnited States
| | | | - Ewa P Malc
- Genetics, University of North Carolina Chapel HillChapel HillUnited States
| | | | - Steven A Roberts
- Molecular Biosciences and Center for Reproductive Biology, Washington State UniversityPullmanUnited States
| | - Kara A Bernstein
- Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
4
|
Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells. Proc Natl Acad Sci U S A 2018; 115:E6516-E6525. [PMID: 29941584 DOI: 10.1073/pnas.1801101115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evolutionary processes are driven by diverse molecular mechanisms that act in the creation and prevention of mutations. It remains unclear how these mechanisms are regulated because limitations of existing mutation assays have precluded measuring how mutation rates vary over time in single cells. Toward this goal, I detected nascent DNA mismatches as a proxy for mutagenesis and simultaneously followed gene expression dynamics in single Escherichia coli cells using microfluidics. This general microscopy-based approach revealed the real-time dynamics of mutagenesis in response to DNA alkylation damage and antibiotic treatments. It also enabled relating the creation of DNA mismatches to the chronology of the underlying molecular processes. By avoiding population averaging, I discovered cell-to-cell variation in mutagenesis that correlated with heterogeneity in the expression of alternative responses to DNA damage. Pulses of mutagenesis are shown to arise from transient DNA repair deficiency. Constitutive expression of DNA repair pathways and induction of damage tolerance by the SOS response compensate for delays in the activation of inducible DNA repair mechanisms, together providing robustness against the toxic and mutagenic effects of DNA alkylation damage.
Collapse
|
5
|
Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 2017; 12:e0170719. [PMID: 28118378 PMCID: PMC5261740 DOI: 10.1371/journal.pone.0170719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis.
Collapse
Affiliation(s)
- Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| | - Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| |
Collapse
|
6
|
Mielecki D, Sikora A, Wrzesiński M, Nieminuszczy J, Detman A, Żuchniewicz K, Gromadka R, Grzesiuk E. Evaluation of the Escherichia coli HK82 and BS87 strains as tools for AlkB studies. DNA Repair (Amst) 2015; 39:34-40. [PMID: 26769230 DOI: 10.1016/j.dnarep.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023]
Abstract
Within a decade the family of AlkB dioxygenases has been extensively studied as a one-protein DNA/RNA repair system in Escherichia coli but also as a group of proteins of much wider functions in eukaryotes. Two strains, HK82 and BS87, are the most commonly used E. coli strains for the alkB gene mutations. The aim of this study was to assess the usefulness of these alkB mutants in different aspects of research on AlkB dioxygenases that function not only in alkylated DNA repair but also in other metabolic processes in cells. Using of HK82 and BS87 strains, we found the following differences among these alkB(-) derivatives: (i) HK82 has shown more than 10-fold higher MMS-induced mutagenesis in comparison to BS87; (ii) different specificity of Arg(+) revertants; (iii) increased induction of SOS and Ada responses in HK82; (iv) the genome of HK82, in comparison to AB1157 and BS87, contains additional mutations: nalA, sbcC, and nuoC. We hypothesize that in HK82 these mutations, together with the non-functional AlkB protein, may result in much higher contents of ssDNA, thus higher in comparison to BS87 MMS-induced mutagenesis. In the light of our findings, we strongly recommend using BS87 strain in AlkB research as HK82, bearing several additional mutations in its genome, is not an exact derivative of the AB1157 strain, and shows additional features that may disturb proper interpretation of obtained results.
Collapse
Affiliation(s)
- D Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M Wrzesiński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - J Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - K Żuchniewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - R Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - E Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Sikora A, Maciejewska AM, Poznański J, Pilżys T, Marcinkowski M, Dylewska M, Piwowarski J, Jakubczak W, Pawlak K, Grzesiuk E. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent. Mutat Res 2015; 778:52-60. [PMID: 26114961 DOI: 10.1016/j.mrfmmm.2015.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
Abstract
An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.
Collapse
Affiliation(s)
- Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Pilżys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wioletta Jakubczak
- Department of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Pawlak
- Department of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
Mielecki D, Wrzesiński M, Grzesiuk E. Inducible repair of alkylated DNA in microorganisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:294-305. [PMID: 25795127 DOI: 10.1016/j.mrrev.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022]
Abstract
Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model.
Collapse
Affiliation(s)
- Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Michał Wrzesiński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.
| |
Collapse
|
9
|
Mielecki D, Saumaa S, Wrzesiński M, Maciejewska AM, Żuchniewicz K, Sikora A, Piwowarski J, Nieminuszczy J, Kivisaar M, Grzesiuk E. Pseudomonas putida AlkA and AlkB proteins comprise different defense systems for the repair of alkylation damage to DNA - in vivo, in vitro, and in silico studies. PLoS One 2013; 8:e76198. [PMID: 24098441 PMCID: PMC3788762 DOI: 10.1371/journal.pone.0076198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Michał Wrzesiński
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka M. Maciejewska
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sikora
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Piwowarski
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Nieminuszczy
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (EG); (MK)
| | - Elżbieta Grzesiuk
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (EG); (MK)
| |
Collapse
|
10
|
Mielecki D, Zugaj DŁ, Muszewska A, Piwowarski J, Chojnacka A, Mielecki M, Nieminuszczy J, Grynberg M, Grzesiuk E. Novel AlkB dioxygenases--alternative models for in silico and in vivo studies. PLoS One 2012; 7:e30588. [PMID: 22291995 PMCID: PMC3265494 DOI: 10.1371/journal.pone.0030588] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022] Open
Abstract
Background ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB− mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.
Collapse
Affiliation(s)
- Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Dorota Ł. Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Marcin Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jadwiga Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- * E-mail: (MG); (EG)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- * E-mail: (MG); (EG)
| |
Collapse
|
11
|
Gao W, Li L, Xu P, Fang J, Xiao S, Chen S. Frequent down-regulation of hABH2 in gastric cancer and its involvement in growth of cancer cells. J Gastroenterol Hepatol 2011; 26:577-84. [PMID: 21155885 DOI: 10.1111/j.1440-1746.2010.06531.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Methyl or 1, N(6) -ethenoadenine base lesions are frequent and highly-mutagenic or -carcinogenic events in mammalian DNA. Human AlkB homologue-2 (hABH2), a homologue of the Escherichia coli AlkB protein, has been found to be the principal dioxygenase for the repair of these lesions. Mounting evidence indicates that impaired DNA repair contributes to gastric cancer induction and progression. Whether hABH2 is involved in this malignancy is unknown. The present study was aimed to investigate the expression profile of hABH2 in gastric cancer and the effect of hABH2 on cancer cell growth. METHODS The expression of hABH2 in 35 pair-matched gastric neoplastic and adjacent non-neoplastic tissues, and in five gastric cancer cell lines, was examined by real-time polymerase chain reaction (PCR), immunohistochemistry, or Western blot. The cell growth was determined using cell-counting kit-8 assay. The apoptosis or cell-cycle analysis was determined using flow cytometry. RESULTS The hABH2 expression was downregulated in 68% (24/35) of primary gastric cancers, as determined by real-time PCR; the hABH2 expression was also substantially decreased in gastric cancer cell lines. Immunohistochemical or Western blot analysis further confirmed the downregulation of hABH2 expression in gastric cancers. The overexpression of hABH2 significantly inhibited the proliferation of gastric cancer cells, and induced G(1) arrest of the cell cycle, while hABH2 knockdown promoted cell growth and cell-cycle progression of gastric cancer cells. CONCLUSIONS These results suggest that hABH2 is downregulated in a subset of gastric cancers, and might be involved in the molecular mechanism of gastric cancer through inhibiting the proliferation of gastric cancer cells.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastroenterology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein. Mutat Res 2010; 688:19-27. [PMID: 20178806 DOI: 10.1016/j.mrfmmm.2010.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart.
Collapse
|