1
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
2
|
Kim KH, Hong EP, Shin JW, Chao MJ, Loupe J, Gillis T, Mysore JS, Holmans P, Jones L, Orth M, Monckton DG, Long JD, Kwak S, Lee R, Gusella JF, MacDonald ME, Lee JM. Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects. Am J Hum Genet 2020; 107:96-110. [PMID: 32589923 DOI: 10.1016/j.ajhg.2020.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.
Collapse
|
3
|
Chen HJC, Chang YL, Teng YC, Hsiao CF, Lin TS. A Stable Isotope Dilution Nanoflow Liquid Chromatography Tandem Mass Spectrometry Assay for the Simultaneous Detection and Quantification of Glyoxal-Induced DNA Cross-Linked Adducts in Leukocytes from Diabetic Patients. Anal Chem 2017; 89:13082-13088. [PMID: 29172486 DOI: 10.1021/acs.analchem.6b04296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glyoxal (gx) is a bifunctional electrophile capable of cross-linking DNA. Although it is present in foods and from the environment, endogenous formation of glyoxal occurs through metabolism of carbohydrates and oxidation of lipids and nucleic acids. Plasma concentrations of glyoxal are elevated in in diabetes mellitus patients compared to nondiabetics. The most abundant 2'-deoxyribonucleoside adducts cross-linked by glyoxal are dG-gx-dC, dG-gx-dA, and dG-gx-dG. These DNA cross-links can be mutagenic by damaging the integrity of the DNA structure. Herein, we developed a highly sensitive and specific assay for the simultaneous detection and quantification of the dG-gx-dC and dG-gx-dA cross-links based on stable isotope dilution (SID) nanoflow liquid chromatography nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the highly selected reaction monitoring mode and using a triple quadrupole mass spectrometer. The entire assay procedure involved addition of the stable isotope standards [15N5]dG-gx-dC and [15N5]dG-gx-dA as internal standards, enzyme hydrolysis to release the cross-links as nucleosides, enrichment by a reversed-phase solid-phase extraction column, and nanoLC-NSI/MS/MS analysis. The detection limit is 0.19 amol for dG-gx-dC and 0.89 amol for dG-gx-dA, which is 400 and 80 times more sensitive, respectively, than capillary LC-NSI/MS/MS assay of these adducts. The lower limit of quantification was 94 and 90 amol for dG-gx-dC and dG-gx-dA, respectively, which is equivalent to 0.056 and 0.065 adducts in 108 normal nucleotides in 50 μg of DNA. In type 2 diabetes mellitus (T2DM) patients (n = 38), the levels of dG-gx-dC and dG-gx-dA in leukocyte DNA were 1.94 ± 1.20 and 2.10 ± 1.77 in 108 normal nucleotides, respectively, which were significantly higher than those in nondiabetics (n = 39: 0.83 ± 0.92 and 1.05 ± 0.99 in 108 normal nucleotides, respectively). Excluding the factor of smoking, an exogenous source of glyoxal, levels of these two cross-linked adducts were found to be significantly higher in nonsmoking T2DM patients than in nonsmoking control subjects. Furthermore, the levels of dG-gx-dC and dG-gx-dA correlated with HbA1c with statistical significance. To our best knowledge, this is the first report of the identification and quantification of glyoxal-derived cross-linked DNA adducts in human leukocyte DNA and their association with T2DM. This SID nanoLC-NSI/MS/MS assay is highly sensitive and specific and it requires only 50 μg of leukocyte DNA isolated from 2-3 mL of blood to accurately quantify these two cross-linked adducts simultaneously. Our assay thus provides a useful biomarker for the evaluation of glyoxal-derived DNA damage.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Ya-Lang Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Yi-Chun Teng
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Chiung-Fong Hsiao
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| | - Tsai-Shiuan Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University , 168 University Road, Ming-Hsiung, Chia-Yi 62102, Taiwan
| |
Collapse
|
4
|
Bignon E, Dršata T, Morell C, Lankaš F, Dumont E. Interstrand cross-linking implies contrasting structural consequences for DNA: insights from molecular dynamics. Nucleic Acids Res 2017; 45:2188-2195. [PMID: 27986856 PMCID: PMC5389527 DOI: 10.1093/nar/gkw1253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 01/17/2023] Open
Abstract
Oxidatively-generated interstrand cross-links rank among the most deleterious DNA lesions. They originate from abasic sites, whose aldehyde group can form a covalent adduct after condensation with the exocyclic amino group of purines, sometimes with remarkably high yields. We use explicit solvent molecular dynamics simulations to unravel the structures and mechanical properties of two DNA sequences containing an interstrand cross-link. Our simulations palliate the absence of experimental structural and stiffness information for such DNA lesions and provide an unprecedented insight into the DNA embedding of lesions that represent a major challenge for DNA replication, transcription and gene regulation by preventing strand separation. Our results based on quantum chemical calculations also suggest that the embedding of the ICL within the duplex can tune the reaction profile, and hence can be responsible for the high difference in yields of formation.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France.,Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Christophe Morell
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Filip Lankaš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic.,Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| |
Collapse
|
5
|
Zhu S, Pabla N, Tang C, He L, Dong Z. DNA damage response in cisplatin-induced nephrotoxicity. Arch Toxicol 2015; 89:2197-205. [PMID: 26564230 DOI: 10.1007/s00204-015-1633-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 01/17/2023]
Abstract
Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) are an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Shiyao Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Navjotsingh Pabla
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Electron microscopy in rat brain slices reveals rapid accumulation of Cisplatin on ribosomes and other cellular components only in glia. CHEMOTHERAPY RESEARCH AND PRACTICE 2014; 2014:174039. [PMID: 25610648 PMCID: PMC4291194 DOI: 10.1155/2014/174039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 01/24/2023]
Abstract
Cisplatin is a widely used, effective anticancer drug. Its use, however, is associated with several side effects including nephrotoxicity and neurotoxicity. It is known that cisplatin is accumulated in cells by the organic cation transport system and reacts with nucleotides, damaging them, but the precise target of cisplatin-induced neurotoxicity remains obscure. Here we report direct visualization of cisplatin inside brain cells using in vivo "cisplatin staining," a technique that takes advantage of the high electron density of cisplatin, which contains platinum (atomic mass = 195). After applying 0.1% cisplatin to living brain slices for 30 min, we fixed the tissue and observed the accumulated cisplatin using electron microscopy. We found that cisplatin was localized mainly to ribosomes associated with endoplasmic reticulum (EPR) in glial cells and to the myelin sheath formed by oligodendrocytes around neuronal axons. Staining of nuclear DNA was moderate. Our in vivo "cisplatin staining" method validated that the main target of cisplatin is a direct attack on myelin and the RNA contained in ribosomes.
Collapse
|
7
|
Takayama K, Kawakami Y, Lee S, Greco N, Lavasani M, Mifune Y, Cummins JH, Yurube T, Kuroda R, Kurosaka M, Fu FH, Huard J. Involvement of ERCC1 in the pathogenesis of osteoarthritis through the modulation of apoptosis and cellular senescence. J Orthop Res 2014; 32:1326-32. [PMID: 24964749 PMCID: PMC4134687 DOI: 10.1002/jor.22656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/10/2014] [Indexed: 02/04/2023]
Abstract
DNA damage is a cause of age related pathologies, including osteoarthritis (OA). Excision repair cross complementation group 1 (ERCC1) is an endonuclease required for DNA damage repair. In this study we investigated the function of ERCC1 in chondrocytes and its association with the pathophysiology of OA. ERCC1 expression in normal and osteoarthritic cartilage was assessed, as were changes in ERCC1 expression in chondrocytes under catabolic stress. Inhibiting ERCC1 in chondrocytes under interleukin-1β stimulation using small interfering RNA (siRNA) was also evaluated. Finally, cellular senescence and apoptosis were examined in relation to ERCC1 function. ERCC1 expression was decreased in OA cartilage and increased within 4 h of exposure to interleukin (IL)-1β, but decreased after 12 h. The inhibition of ERCC1 by siRNA increased the expression of matrix metallopeptidase 13 and decreased collagen type II. ERCC1 inhibition also increased the number of apoptotic and senescent cells. The inhibition of ERCC1 in chondrocytes increased their expression of OA related proteins, apoptosis, cellular senescence, and hypertrophic-like changes which suggest that ERCC1 is critical for protecting human chondrocytes (HCs) from catabolic stresses and provides insights into the pathophysiology of OA and a potential target for its treatment. (191)
Collapse
Affiliation(s)
- Koji Takayama
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yohei Kawakami
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sahnghoon Lee
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Nick Greco
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mitra Lavasani
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yutaka Mifune
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - James H. Cummins
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Takashi Yurube
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Johnny Huard
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
8
|
Price N, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS. Interstrand DNA-DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J Am Chem Soc 2014; 136:3483-90. [PMID: 24506784 PMCID: PMC3954461 DOI: 10.1021/ja410969x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 01/28/2023]
Abstract
The loss of a coding nucleobase from the structure of DNA is a common event that generates an abasic (Ap) site (1). Ap sites exist as an equilibrating mixture of a cyclic hemiacetal and a ring-opened aldehyde. Aldehydes are electrophilic functional groups that can form covalent adducts with nucleophilic sites in DNA. Thus, Ap sites present a potentially reactive aldehyde as part of the internal structure of DNA. Here we report evidence that the aldehyde group of Ap sites in duplex DNA can form a covalent adduct with the N(6)-amino group of adenine residues on the opposing strand. The resulting interstrand DNA-DNA cross-link occurs at 5'-ApT/5'-AA sequences in remarkably high yields (15-70%) under physiologically relevant conditions. This naturally occurring DNA-templated reaction has the potential to generate cross-links in the genetic material of living cells.
Collapse
Affiliation(s)
- Nathan
E. Price
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin M. Johnson
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jin Wang
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Mostafa I. Fekry
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Liu S, Wang Y. A quantitative mass spectrometry-based approach for assessing the repair of 8-methoxypsoralen-induced DNA interstrand cross-links and monoadducts in mammalian cells. Anal Chem 2013; 85:6732-9. [PMID: 23789926 DOI: 10.1021/ac4012232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interstrand cross-links (ICLs) are highly toxic DNA lesions that block transcription and replication by preventing strand separation. ICL-inducing agents were among the earliest and are still the most widely used forms of chemotherapeutic drugs. Because of the repair of DNA ICLs, the therapeutic efficacy of the DNA cross-linking agents is often reduced by the development of chemoresistance in patients. Thus, it is very important to understand how various DNA ICLs are repaired. Such studies are currently hampered by the lack of an analytical method for monitoring directly the repair of DNA ICLs in cells. Here we report a high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method, together with the isotope dilution technique, for assessing the repair of 8-methoxypsoralen (8-MOP)-induced DNA ICLs, as well as monoadducts (MAs), in cultured mammalian cells. We found that, while there were substantial decreases in the levels of ICL and MAs in repair-competent cells 24 h after 8-MOP/UVA treatment, there was little repair of 8-MOP-ICLs and -MAs in xeroderma pigmentosum, complementation group A-deficient human skin fibroblasts and excision repair cross-complementing rodent repair deficiency, complementation group 1-deficient Chinese hamster ovary cells over a 24 h period. This result provided unequivocal evidence supporting the notion that the 8-MOP photoadducts are substrates for nucleotide excision repair in mammalian cells. This is one of the first few reports about the application of LC-MS/MS for assessing the repair of DNA ICLs. The analytical method developed here, when combined with genetic manipulation, will also facilitate the assessment of the roles of other DNA repair pathways in removing these DNA lesions, and the method can also be generally applicable for investigating the repair of other types of DNA ICLs in mammalian cells.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | | |
Collapse
|
10
|
Zhang P, Herbig U, Coffman F, Lambert MW. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage. Nucleic Acids Res 2013; 41:5321-40. [PMID: 23571757 PMCID: PMC3664817 DOI: 10.1093/nar/gkt235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35–40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07042, USA
| | | | | | | |
Collapse
|
11
|
Johnson KM, Price NE, Wang J, Fekry MI, Dutta S, Seiner DR, Wang Y, Gates KS. On the formation and properties of interstrand DNA-DNA cross-links forged by reaction of an abasic site with the opposing guanine residue of 5'-CAp sequences in duplex DNA. J Am Chem Soc 2013; 135:1015-25. [PMID: 23215239 DOI: 10.1021/ja308119q] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5'-CAp sequence under conditions of reductive amination (NaCNBH(3), pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions, and the cross-link, once formed, was stable to a variety of workup conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LC-MS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N(2)-amino group of the opposing guanine residue in 5'-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH(3)/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N(2)-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH(3).
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
13
|
Sharma S, Canman CE. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:725-40. [PMID: 23065650 PMCID: PMC5543726 DOI: 10.1002/em.21736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 05/06/2023]
Abstract
DNA interstrand crosslinks (ICLs) are covalent linkages between two strands of DNA, and their presence interferes with essential metabolic processes such as transcription and replication. These lesions are extremely toxic, and their repair is essential for genome stability and cell survival. In this review, we will discuss how the removal of ICLs requires interplay between multiple genome maintenance pathways and can occur in the absence of replication (replication-independent ICL repair) or during S phase (replication-coupled ICL repair), the latter being the predominant pathway used in mammalian cells. It is now well recognized that translesion DNA synthesis (TLS), especially through the activities of REV1 and DNA polymerase zeta (Polζ), is necessary for both ICL repair pathways operating throughout the cell cycle. Recent studies suggest that the convergence of two replication forks upon an ICL initiates a cascade of events including unhooking of the lesion through the actions of structure-specific endonucleases, thereby creating a DNA double-stranded break (DSB). TLS across the unhooked lesion is necessary for restoring the sister chromatid before homologous recombination repair. Biochemical and genetic studies implicate REV1 and Polζ as being essential for performing lesion bypass across the unhooked crosslink, and this step appears to be important for subsequent events to repair the intermediate DSB. The potential role of Fanconi anemia pathway in the regulation of REV1 and Polζ-dependent TLS and the involvement of additional polymerases, including DNA polymerases kappa, nu, and theta, in the repair of ICLs is also discussed in this review.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
14
|
Abstract
Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler model organisms has significantly hampered progress in this field. Two recent studies have finally identified a Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway.
Collapse
|
15
|
The Fanconi anemia pathway in replication stress and DNA crosslink repair. Cell Mol Life Sci 2012; 69:3963-74. [PMID: 22744751 DOI: 10.1007/s00018-012-1051-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 01/08/2023]
Abstract
Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered through analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained using new repair assays and highlight the role of the Fanconi anemia repair pathway during replication stress.
Collapse
|
16
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Williams HL, Gottesman ME, Gautier J. Replication-independent repair of DNA interstrand crosslinks. Mol Cell 2012; 47:140-7. [PMID: 22658724 DOI: 10.1016/j.molcel.2012.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/19/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
Abstract
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that covalently link opposite strands of the DNA helix and block DNA unwinding. ICLs are repaired during and outside S phase, and replication-independent ICL repair (RIR) is critical to maintain genomic integrity and to allow transcription in nondividing or slowly dividing cells. Here, we show that the Y family DNA polymerase kappa (Pol κ) is essential for RIR of a site-specific ICL lesion in Xenopus egg extracts, and that both its catalytic activity and UBZ domains are required for this function. We also demonstrate a requirement for PCNA and its modification on lysine 164. Finally, we show that Pol κ participates in ICL repair in mammalian cells, particularly in G0. Our results identify key components of the RIR pathway and begin to unravel its mechanism.
Collapse
Affiliation(s)
- Hannah L Williams
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
18
|
Kang J, D'Andrea AD, Kozono D. A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst 2012; 104:670-81. [PMID: 22505474 PMCID: PMC3341307 DOI: 10.1093/jnci/djs177] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background New tools are needed to predict outcomes of ovarian cancer patients treated with platinum-based chemotherapy. We hypothesized that a molecular score based on expression of genes that are involved in platinum-induced DNA damage repair could provide such prognostic information. Methods Gene expression data was extracted from The Cancer Genome Atlas (TCGA) database for 151 DNA repair genes from tumors of serous ovarian cystadenocarcinoma patients (n = 511). A molecular score was generated based on the expression of 23 genes involved in platinum-induced DNA damage repair pathways. Patients were divided into low (scores 0–10) and high (scores 11–20) score groups, and overall survival (OS) was analyzed by Kaplan–Meier method. Results were validated in two gene expression microarray datasets. Association of the score with OS was compared with known clinical factors (age, stage, grade, and extent of surgical debulking) using univariate and multivariable Cox proportional hazards models. Score performance was evaluated by receiver operating characteristic (ROC) curve analysis. Correlations between the score and likelihood of complete response, recurrence-free survival, and progression-free survival were assessed. Statistical tests were two-sided. Results Improved survival was associated with being in the high-scoring group (high vs low scores: 5-year OS, 40% vs 17%, P < .001), and results were reproduced in the validation datasets (P < .05). The score was the only pretreatment factor that showed a statistically significant association with OS (high vs low scores, hazard ratio of death = 0.40, 95% confidence interval = 0.32 to 0.66, P < .001). ROC curves indicated that the score outperformed the known clinical factors (score in a validation dataset vs clinical factors, area under the curve = 0.65 vs 0.52). The score positively correlated with complete response rate, recurrence-free survival, and progression-free survival (Pearson correlation coefficient [r2] = 0.60, 0.84, and 0.80, respectively; P < .001 for all). Conclusion The DNA repair pathway–focused score can be used to predict outcomes and response to platinum therapy in ovarian cancer patients.
Collapse
|
19
|
Miller PS. Syntheses of DNA duplexes that contain a N⁴C-alkyl-N⁴C interstrand cross-link. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2011; Chapter 5:Unit5.10. [PMID: 21400705 DOI: 10.1002/0471142700.nc0510s44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes a simple procedure for preparing short DNA duplexes that contain a single N(4)C-alkyl-N(4)C interstrand cross-link. The synthesis is carried out on an automated DNA synthesizer using standard phosphoramidite chemistry. The cross-link is introduced during the synthesis of the duplex. The method can be used to prepare milligram quantities of cross-linked duplexes suitable for physical studies and for the preparation of larger DNA molecules that can be used as substrates to study DNA repair in whole cell extracts and in living cells in culture.
Collapse
Affiliation(s)
- Paul S Miller
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Guainazzi A, Campbell AJ, Angelov T, Simmerling C, Schärer OD. Synthesis and molecular modeling of a nitrogen mustard DNA interstrand crosslink. Chemistry 2011; 16:12100-3. [PMID: 20842675 DOI: 10.1002/chem.201002041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Angelo Guainazzi
- Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | |
Collapse
|
21
|
Friedman JI, Jiang YL, Miller PS, Stivers JT. Unique dynamic properties of DNA duplexes containing interstrand cross-links. Biochemistry 2011; 50:882-90. [PMID: 21174443 DOI: 10.1021/bi101813h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand cross-linked (ICL) structures that are potent cytotoxins. Because it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem, we have synthesized and characterized several homogeneous ICL DNAs containing site-specific staggered N4-cytosine-ethyl-N4-cytosine cross-links. Staggered cross-links were introduced in two ways, in a manner that preserves the overall structure of B-form duplex DNA and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by (1)H NMR line width or imino proton solvent exchange showed that the guanine base opposite the cross-linked cytosine opened at least 1 order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the cross-link to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross-link, which extended over the entire DNA sequence. Because DNA duplexes containing the B-form and non-B-form ICL cross-links have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model in which destabilized ICL duplexes serve to energetically facilitate binding of DNA repair factors that must induce bubbles or other distortions in the duplex. However, the essential requirement for incision is an immobile Y-junction where the repair factors are stably bound at the site of the ICL, and the two DNA strands are unpaired.
Collapse
Affiliation(s)
- Joshua I Friedman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | | | | | | |
Collapse
|
22
|
Guainazzi A, Schärer OD. Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell Mol Life Sci 2010; 67:3683-97. [PMID: 20730555 PMCID: PMC3732395 DOI: 10.1007/s00018-010-0492-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 01/16/2023]
Abstract
Many cancer chemotherapeutic agents form DNA interstrand crosslinks (ICLs), extremely cytotoxic lesions that form covalent bonds between two opposing DNA strands, blocking DNA replication and transcription. However, cellular responses triggered by ICLs can cause resistance in tumor cells, limiting the efficacy of such treatment. Here we discuss recent advances in our understanding of the mechanisms of ICL repair that cause this resistance. The recent development of strategies for the synthesis of site-specific ICLs greatly contributed to these insights. Key features of repair are similar for all ICLs, but there is increasing evidence that the specifics of lesion recognition and synthesis past ICLs by DNA polymerases are dependent upon the structure of ICLs. These new insights provide a basis for the improvement of antitumor therapy by targeting DNA repair pathways that lead to resistance to treatment with crosslinking agents.
Collapse
Affiliation(s)
- Angelo Guainazzi
- Departments of Pharmacological Sciences, Chemistry 619, Stony Brook University, Stony Brook, NY 11794-3400 USA
| | - Orlando D. Schärer
- Departments of Pharmacological Sciences and Chemistry, Chemistry 619, Stony Brook University, Stony Brook, NY 11794-3400 USA
| |
Collapse
|
23
|
Hlavin EM, Smeaton MB, Noronha AM, Wilds CJ, Miller PS. Cross-link structure affects replication-independent DNA interstrand cross-link repair in mammalian cells. Biochemistry 2010; 49:3977-88. [PMID: 20373772 DOI: 10.1021/bi902169q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA interstrand cross-links (ICLs) are cytotoxic products of common anticancer drugs and cellular metabolic processes, whose mechanism(s) of repair remains poorly understood. In this study, we show that cross-link structure affects ICL repair in nonreplicating reporter plasmids that contain a mispaired N(4)C-ethyl-N(4)C (C-C), N3T-ethyl-N3T (T-T), or N1I-ethyl-N3T (I-T) ICL. The T-T and I-T cross-links obstruct the hydrogen bond face of the base and mimic the N1G-ethyl-N3C ICL created by bis-chloroethylnitrosourea, whereas the C-C cross-link does not interfere with base pair formation. Host-cell reactivation (HCR) assays in human and hamster cells showed that repair of these ICLs primarily involves the transcription-coupled nucleotide excision repair (TC-NER) pathway. Repair of the C-C ICL was 5-fold more efficient than repair of the T-T or I-T ICLs, suggesting the latter cross-links hinder lesion bypass following initial ICL unhooking. The level of luciferase expression from plasmids containing a C-C cross-link remnant on either the transcribed or nontranscribed strand increased in NER-deficient cells, indicating NER involvement occurs at a step prior to remnant removal, whereas expression from similar T-T remnant plasmids was inhibited in NER-deficient cells, demonstrating NER is required for remnant removal. Sequence analysis of repaired plasmids showed a high proportion of C residues inserted at the site of the T-T and I-T cross-links, and HCR assays showed that Rev1 was likely responsible for these insertions. In contrast, both C and G residues were inserted at the C-C cross-link site, and Rev1 was not required for repair, suggesting replicative or other translesion polymerases can bypass the C-C remnant.
Collapse
Affiliation(s)
- Erica M Hlavin
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|