1
|
Kumaravel TS, Brabu B, Parthiban N, Murugan SS, Jha AN. 'Site of contact genotoxicity' assessment for implants - Potential use of single cell gel electrophoresis in biocompatibility testing of medical devices. Toxicol Lett 2021; 341:59-67. [PMID: 33548342 DOI: 10.1016/j.toxlet.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/14/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Toxicological risk assessment of medical devices requires genotoxicity assessment as per ISO 10993, Part 3, which is designed to address gene mutations, clastogenicity and/or aneugenicity endpoints. 'Site of contact genotoxicity' is a potential genotoxic risk especially for medical implants, that is currently not addressed in biocompatibility standards. We therefore performed initial validation study on the use of alkaline single cell gel electrophoresis (comet assay) for detecting 'site of contact genotoxicity' of medical devices, using test items made of acrylic implants impregnated with ethyl methanesulphonate (EMS). Comet assay detected increased DNA migration at the site of implantation, but not in the liver. The same implants also failed to show any genotoxicity potentials, when tested on the standard test battery using Salmonella/microsome and chromosome aberration assays. The study suggested that some medical implants can cause 'site of contact genotoxicity', without producing systemic genotoxicity. In conclusion, comet assay will add new dimension to safety assessment of medical devices, and this assay can be added to the battery of genetic toxicology tests for evaluating biocompatibility of medical implants.
Collapse
Affiliation(s)
- T S Kumaravel
- GLR Laboratories (Europe) Pvt Ltd, Sharnbrook, MK44 1LZ, United Kingdom; GLR Laboratories Pvt Ltd, Chennai, 600068, India.
| | - B Brabu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - N Parthiban
- GLR Laboratories Pvt Ltd, Chennai, 600068, India
| | - S S Murugan
- GLR Laboratories Pvt Ltd, Chennai, 600068, India
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
2
|
Ji Z, Settivari RS, LeBaron MJ. Pilot studies evaluating the nongenotoxic rodent carcinogens phenobarbital and clofibrate in the rat Pig-a assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:42-46. [PMID: 30338550 DOI: 10.1002/em.22232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Raja S Settivari
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| |
Collapse
|
3
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
4
|
Maranghi F, Tassinari R, Narciso L, Tait S, Rocca CL, Felice GD, Butteroni C, Corinti S, Barletta B, Cordelli E, Pacchierotti F, Eleuteri P, Villani P, Hegarat LL, Fessard V, Reale O. In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB). ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eugenia Cordelli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Francesca Pacchierotti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Patrizia Eleuteri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Paola Villani
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Italy
| | - Ludovic Le Hegarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| | - Océane Reale
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES) France
| |
Collapse
|
5
|
Ji Z, LeBaron MJ. Applying the erythrocyte Pig-a assay concept to rat epididymal sperm for germ cell mutagenicity evaluation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:485-493. [PMID: 28714084 DOI: 10.1002/em.22109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Pig-a assay, a recently developed in vivo somatic gene mutation assay, is based on the identification of mutant erythrocytes that have an altered repertoire of glycosylphosphatidylinositol (GPI)-anchored cell surface markers. We hypothesized that the erythrocyte Pig-a assay concept could be applied to rat cauda epididymal spermatozoa (sperm) for germ cell mutagenicity evaluation. We used GPI-anchored CD59 as the Pig-a mutation marker and examined the frequency of CD59-negative sperm using flow cytometry. A reconstruction experiment that spiked un-labeled sperm (mutant-mimic) into labeled sperm at specific ratios yielded good agreement between the detected and expected frequencies of mutant-mimic sperm, demonstrating the analytical ability for CD59-negative sperm detection. Furthermore, this methodology was assessed in F344/DuCrl rats administered N-ethyl-N-nitrosourea (ENU), a prototypical mutagen, or clofibrate, a lipid-lowering drug. Rats treated with 1, 10, or 20 mg/kg body weight/day (mkd) ENU via daily oral garage for five consecutive days showed a dose-dependent increase in the frequency of CD59-negative sperm on study day 63 (i.e., 58 days after the last ENU dose). This ENU dosing regimen also increased the frequency of CD59-negative erythrocytes. In rats treated with 300 mkd clofibrate via daily oral garage for consecutive 28 days, no treatment-related changes were detected in the frequency of CD59-negative sperm on study day 85 (i.e., 57 days after the last dose) or in the frequency of CD59-negative erythrocytes on study day 29. In conclusion, these data suggest that the epidiymal sperm Pig-a assay in rats is a promising method for evaluating germ cell mutagenicity. Environ. Mol. Mutagen. 58:485-493, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| |
Collapse
|
6
|
Itoh S, Hattori C, Nakayama S, Hanamoto A. PIGRET assay can detect mutagenicity of ethyl methanesulfonate much earlier than RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:102-105. [PMID: 27931801 DOI: 10.1016/j.mrgentox.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The comparison between the original red blood cell (RBC) Pig-a assay, which measures Pig-a mutant RBCs, and the PIGRET assay, which uses reticulocytes, was conducted using in vivo mutagenesis by ethyl methanesulfonate (EMS) as a part of a collaborative study by the Mammalian Mutagenicity Study Group in the Japanese Environmental Mutagen Society. Three dose levels of EMS (180, 360, and 720mg/kg) were administered once by oral gavage to 8-week-old male Crl:CD(SD) rats, and peripheral blood was sampled at 0 (1 day before dosing), 1, 2, and 4 weeks after dosing with EMS. As a result, a statistically significant increase in the mutant frequency of the Pig-a gene was observed from 2 weeks after dosing and a higher value was obtained on week 4 at the highest dose only in the RBC Pig-a assay. In the PIGRET assay, on the other hand, a statistically significant increase in Pig-a mutant frequency was obtained at the highest dose from 1 week after dosing, and it decreased on weeks 2 and 4 compared to the value at week 1. The Pig-a mutant frequency appeared to reach a plateau 1 week after dosing in the PIGRET assay and it might continue to increase even after week 4 in the RBC Pig-a assay. These results indicate that the PIGRET assay can detect Pig-a mutants much earlier than the original RBC Pig-a assay, and it can enable judgement of mutagenicity of EMS within 1 week after a single dosing.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Chiharu Hattori
- Biologics Pharmacology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shiho Nakayama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Akiharu Hanamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
7
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
8
|
Muto S, Yamada K, Kato T, Iwase Y, Uno Y. Pig-a Gene Mutation and Micronucleus Induction in Rat Peripheral Blood by Methyl Methanesulfonate. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|