1
|
Munakata S, Watanabe T, Takahashi T, Kimuro S, Ishimori K, Hashizume T. Development of a micronucleus test using the EpiAirway™ organotypic human airway model. Genes Environ 2023; 45:14. [PMID: 37046355 PMCID: PMC10099928 DOI: 10.1186/s41021-023-00269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The use of organotypic human tissue models in genotoxicity has increased as an alternative to animal testing. Genotoxicity is generally examined using a battery of in vitro assays such as Ames and micronucleus (MN) tests that cover gene mutations and structural and numerical chromosome aberrations. At the 7th International Workshop on Genotoxicity Testing, working group members agreed that the skin models have reached an advanced stage of maturity, while further efforts in liver and airway models are needed [Pfuhler et al., Mutat. Res. 850-851 (2020) 503135]. Organotypic human airway model is composed of fully differentiated and functional respiratory epithelium. However, because cell proliferation in organotypic airway models is thought to be less active, assessing their MN-inducing potential is an issue, even in the cytokinesis-blocking approach using cytochalasin B (CB) [Wang et al., Environ. Mol. Mutagen. 62 (2021) 306-318]. Here, we developed a MN test using EpiAirway™ in which epidermal growth factor (EGF) was included as a stimulant of cell division. RESULTS By incubating EpiAirway™ tissue with medium containing various concentrations of CB, we found that the percentage of binucleated cells (%BNCs) almost plateaued at 3 μg/mL CB for 72 h incubation. Additionally, we confirmed that EGF stimulation with CB incubation produced an additional increase in %BNCs with a peak at 5 ng/mL EGF. Transepithelial electrical resistance measurement and tissue histology revealed that CB incubation caused the reduced barrier integrity and cyst formation in EpiAirway™. Adenylate kinase assay confirmed that the cytotoxicity increased with each day of culture in the CB incubation period with EGF stimulation. These results indicated that chemical treatment should be conducted prior to CB incubation. Under these experimental conditions, it was confirmed that the frequency of micronucleated cells was dose-dependently increased by apical applications of two clastogens, mitomycin C and methyl methanesulfonate, and an aneugen, colchicine, at the subcytotoxic concentrations assessed in %BNCs. CONCLUSIONS Well-studied genotoxicants demonstrated capability in an organotypic human airway model as a MN test system. For further utilization, investigations of aerosol exposure, repeating exposure protocol, and metabolic activation are required.
Collapse
Affiliation(s)
- Satoru Munakata
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Taku Watanabe
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tomohiro Takahashi
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shiori Kimuro
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
2
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
3
|
Short Assay Design for Micronucleus Detection in Human Lymphocytes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2322257. [PMID: 34552982 PMCID: PMC8452413 DOI: 10.1155/2021/2322257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
There has been a constant need to develop new and faster cytogenetic assays to measure the instability induced by genotoxic agents in the field of cytogenetic research, an example of which is the micronucleus assay. Micronuclei are fragments or complete chromosomes that remain in the cytoplasm during mitosis. With their high sensitivity and specificity detection, their presence can indicate environmental and occupational genotoxic effects. However, the prolonged periods of cell incubation this assay necessitates are costly and extensive. Hence, it is essential to develop an improved assay that can achieve standardization by being reproducible in practice. The standard protocol for the detection of micronuclei in lymphocytes uses a total assay time of 72 hours. Theoretically, it is possible to reduce the incubation period, and consequently, the total assay time, considering a lymphocyte, completes its mitosis in 24 hours. This study, after careful review of literature, proposes an experimental design to reduce the incubation period and demonstrates its usefulness in practice through the design of a collaborative trial.
Collapse
|
4
|
Mišík M, Nersesyan A, Kment M, Ernst B, Setayesh T, Ferk F, Holzmann K, Krupitza G, Knasmueller S. Micronucleus assays with the human derived liver cell line (Huh6): A promising approach to reduce the use of laboratory animals in genetic toxicology. Food Chem Toxicol 2021; 154:112355. [PMID: 34147571 DOI: 10.1016/j.fct.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/22/2023]
Abstract
The inadequate representation of enzymes which catalyze the activation/detoxification of xenobiotics in cells that are currently used in genotoxicity testing of chemicals leads to a high number of false positive results and the number of follow up studies with rodents could be reduced by use of more reliable in vitro models. We found earlier that several xenobiotic drug metabolizing enzymes are represented in the human derived liver cell line Huh6 and developed a protocol for micronucleus (MN) experiments which is in agreement with the current OECD guideline. This protocol was used to test 23 genotoxic and non-genotoxic reference chemicals; based on these results and of earlier findings (with 9 chemicals) we calculated the predictive value of the assay for the detection of genotoxic carcinogens. We found a sensitivity of 80% and a specificity of 94% for a total number of 32 chemicals; comparisons with results obtained with other in vitro assays show that the validity of MN tests with Huh6 is higher as that of other experimental models. These results are promising and indicate that the use of Huh6 cells in genetic toxicology may contribute to the reduction of the use of laboratory rodents; further experimental work to confirm this assumption is warranted.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Benjamin Ernst
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | | |
Collapse
|
5
|
Hadi NSA, Bankoglu EE, Schott L, Leopoldsberger E, Ramge V, Kelber O, Sievers H, Stopper H. Genotoxicity of selected pyrrolizidine alkaloids in human hepatoma cell lines HepG2 and Huh6. Mutat Res 2020; 861-862:503305. [PMID: 33551105 DOI: 10.1016/j.mrgentox.2020.503305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pyrrolizidine alkaloids (PAs) are found in many plant species as secondary metabolites which affect humans via contaminated food sources, herbal medicines and dietary supplements. Hundreds of compounds belonging to PAs have been identified. PAs undergo hepatic metabolism, after which they can induce hepatotoxicity and carcinogenicity. Many aspects of their mechanism of carcinogenicity are still unclear and it is important for human risk assessment to investigate this class of compounds further. MATERIAL AND METHODS Human hepatoma cells HepG2 were used to investigate the genotoxicity of different chemical structural classes of PAs, namely europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine and lasiocarpine, in the cytokinesis-block micronucleus (CBMN) assay. The different ester type PAs europine, seneciphylline, and lasiocarpine were also tested in human hepatoma Huh6 cells. Six different PAs were investigated in a crosslink comet assay in HepG2 cells. RESULTS The maximal increase of micronucleus formation was for all PAs in the range of 1.64-2.0 fold. The lowest concentrations at which significant induction of micronuclei were found were 3.2 μM for lasiocarpine and riddelliine, 32 μM for retrorsine and echimidine, and 100 μM for seneciphylline, europine and lycopsamine. Significant induction of micronuclei by lasiocarpine, seneciphylline, and europine were achieved in Huh6 cells at similar concentrations. Reduced tail formation after hydrogen peroxide treatment was found in the crosslink comet assay for all diester type PAs, while an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. CONCLUSION The widely available human hepatoma cell lines HepG2 and Huh6 were suitable for the assessment of PA-induced genotoxicity. Selected PAs confirmed previously published potency rankings in the micronucleus assay. In HepG2 cells, the crosslinking activity was related to the ester type, which is a first report of PA mediated effects in the comet assay.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Lea Schott
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Leopoldsberger
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Vanessa Ramge
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Olaf Kelber
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
| | | | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
6
|
Mišík M, Ferk F, Schaar H, Yamada M, Jaeger W, Knasmueller S, Kreuzinger N. Genotoxic activities of wastewater after ozonation and activated carbon filtration: Different effects in liver-derived cells and bacterial indicators. WATER RESEARCH 2020; 186:116328. [PMID: 32866931 DOI: 10.1016/j.watres.2020.116328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Aim of this study was to investigate the impact of advanced wastewater treatment techniques (combining ozonation with activated carbon filtration) on acute and genotoxic activities of tertiary treated wastewater. Concentrated samples were tested in Salmonella/microsome assays. Furthermore, induction of DNA damage was measured in liver-derived cells (human hepatoma and primary rat hepatocytes) in single cell gel electrophoresis experiments, which are based on the measurement of DNA migration in an electric field. These cell types possess phase I and phase II enzymes, which catalyze the activation/detoxification of mutagens. Acute toxicity was determined with the trypan blue exclusion technique. We found no evidence for mutagenic effects of non-ozonated samples in several bacterial tester strains (TA98, TA100, YG7108, YG7104, YG7112 and YG7113) but clear induction of His+ mutants after O3 treatment in two strains with defective genes encoding for DNA repair, which are highly sensitive towards alkylating agents (YG7108 and YG7104). These effects were reduced after activated carbon filtration. Furthermore, we detected a slight increase of mutagenic activity in strain YG1024 with increased acetyltransferase activity, which is sensitive towards aromatic amines and nitro compounds in untreated water, which was not reduced by O3 treatment. A completely different pattern of mutagenic activity was seen in liver-derived cells; non ozonated samples caused in both cell types pronounced DNA damage, which was reduced (by ca. 25%) after ozonation. Activated carbon treatment did not cause a substantial further reduction of DNA damage. Additional experiments with liver homogenate indicate that the compounds which cause the effects in the human cells are promutagens which require enzymatic activation. None of the waters caused acute toxicity in the liver-derived cells and in the bacterial indicators. Assuming that hepatic mammalian cells reflect the genotoxic properties of the waters in vertebrates (including humans) more adequately as genetically modified bacterial indicators, we conclude that ozonation has beneficial effects in regard to the reduction of genotoxic properties of treated wastewaters.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Heidemarie Schaar
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, Austria
| | | | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria.
| | - Norbert Kreuzinger
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, Austria
| |
Collapse
|
7
|
Determination of Lymphocyte Cytokinesis-Block Micronucleus Values in Apparently Healthy Children by means of Age and Sex. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8729561. [PMID: 31950057 PMCID: PMC6944958 DOI: 10.1155/2019/8729561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022]
Abstract
The cytokinesis-block micronucleus (MN) assay on blood lymphocytes is one of the most important tests implemented in cytogenetics for the measurement of genotoxicity. For the purpose of biological dosing, it is crucial to know the spontaneous frequency of MN and its normal values in general population, especially in children, which are used for the population databases. In this study, MN levels were investigated in cytokinesis-blocked lymphocytes of 150 apparently healthy children aged 1 to 15. Our aim was to assess the variability of MN values according to age and sex. The mean MN frequency among boys was 3.69 ± 1.747‰ and 4.12 ± 1.867‰ in girls where there was no significant difference in relation to age and sex. However, when we separated age groups as 0–2 years, 3–5 years, 6–10 years, and 11–15 years, one-way ANOVA test showed significant association. Significance was obvious in the 0–2 years age group with the 3–5 years age group and 6–10 years age group. When we grouped our study population as 0–2 years and 3–15 years, the mean MN frequency among the 0–2 years age group was 2.85 ± 1.599‰ and 4.07 ± 1.867‰ in the 3–15 years age group which was also statistically significant. This difference may be attributed to age-related increase of close contact with environmental hazardous agents. In conclusion, normal values of MN obtained in this study will add valuable information in regard to update the current childhood population data and will act as a reference for further genotoxicity studies.
Collapse
|
8
|
Three-dimensional HepaRG spheroids as a liver model to study human genotoxicity in vitro with the single cell gel electrophoresis assay. Sci Rep 2019; 9:10548. [PMID: 31332230 PMCID: PMC6646340 DOI: 10.1038/s41598-019-47114-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Many efforts have been made in the last 30 years to develop more relevant in vitro models to study genotoxic responses of drugs and environmental contaminants. While 2D HepaRG cells are one of the most promising models for liver toxicology, a switch to 3D cultures that integrate both in vivo architecture and cell-cell interactions has occurred to achieve even more predictive models. Preliminary studies have indicated that 3D HepaRG cells are suitable for liver toxicity screening. Our study aimed to evaluate the response of HepaRG spheroids exposed to various genotoxic compounds using the single cell gel electrophoresis assay. HepaRG spheroids were used at 10 days after seeding and exposed for 24 and 48 hours to certain selected chemical compounds (methylmethansulfonate (MMS), etoposide, benzo[a]pyrene (B[a]P), cyclophosphamide (CPA), 7,12-dimethylbenz[a]anthracene (DMBA), 2-acetylaminofluorene (2-AAF), 4-nitroquinoline (4-NQO), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), acrylamide, and 2-4-diaminotoluene (2,4-DAT)). After treatment, the comet assay was performed on single cell suspensions and cytotoxicity was determined by the ATP assay. Comet formation was observed for all compounds except IQ, etoposide and 2,4-DAT. Treatment of spheroids with rifampicin increased CYP3A4 activity, demonstrating the metabolic capacity of HepaRG spheroids. These data on genotoxicity in 3D HepaRG spheroids are promising, but further experiments are required to prove that this model can improve the predictivity of in vitro models to detect human carcinogens.
Collapse
|