1
|
Pozza SA, Gonçalves PB, Wouters FC, Vendemiatti JAS, Nogarotto DC, Pereira-Filho ER, Osório DMM, Romualdo LL, Godoi JR, Hoinaski L, Urban RC. Particulate matter pollution and non-targeted analysis of polar compounds in three regions of Brazil. CHEMOSPHERE 2023; 341:139839. [PMID: 37604347 DOI: 10.1016/j.chemosphere.2023.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Atmospheric Particulate Matter (PM) is a pollutant with diverse origins, exhibiting varying chemical compositions, and undergoes several molecular transformations in the atmosphere. In this study, PM samples (PM2.5, PM10 and TSP) were collected in five Brazilian cities (Camboriú-SC; Catalão-GO; Florianópolis-SC; Limeira-SP and Novo Hamburgo-RS) during the four seasons of the year. Analysis of Variance (ANOVA) was used to evaluate the differences between each city and season in PM concentration. PM10 average concentrations were higher in the city of Limeira, compared to the other (ANOVA p-values and Tukey's test). Moreover, Tukey's test demonstrated differences between the average PM10 concentrations in summer and winter. Regarding TSP and PM2.5, Tukey's test showed differences between winter and warm seasons (spring and summer). Moreover, polar compounds from the samples collected in the summer (February) and winter (August) periods were analyzed (Ultra-High-Performance Liquid Chromatography coupled to a Quadrupole Time-of-Flight Mass Spectrometer) following a non-targeted approach and annotated. This is the first study to carry out this type of analysis in these five Brazilian cities. Despite the differences in PM concentrations, profiles of polar organic compounds, showed similarities between samples/and, in general, the same compounds were present, albeit with different intensities. The annotated compounds are associated with vehicle emissions and plastics, which are considered important global air polluters. Therefore, there is an urgent necessity for comprehensive studies aimed at investigating the non-targeted compounds existing in the atmosphere. Such research can provide invaluable insights to policymakers, enabling them to formulate effective guidelines and policies to mitigate particulate matter concentration and enhance overall air quality.
Collapse
Affiliation(s)
- Simone A Pozza
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil.
| | - Priscila B Gonçalves
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Felipe C Wouters
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil
| | - Josiane A S Vendemiatti
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Danilo C Nogarotto
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Edenir R Pereira-Filho
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil
| | - Daniela M M Osório
- School of Technology, University of Campinas, R. Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - Lincoln L Romualdo
- Federal University of Catalão, Av. Dr. Lamartine Pinto de Avelar, 1120, Setor Universitário, Catalão, GO, 75705-220, Brazil
| | - Joeci R Godoi
- Federal Institute Catarinense, R. Joaquim Garcia, S/n - Centro, Camboriú, SC, 88340-055, Brazil
| | - Leonardo Hoinaski
- Federal University of Santa Catarina, R. Eng. Agronômico Andrei Cristian Ferreira, S/n - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Roberta C Urban
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, S/n, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
do Nascimento RDKS, Carvalho JS, Miranda RR, Lima MA, Rocha FV, Zucolotto V, Lynch I, Urban RC. In vitro toxicity and lung cancer risk: Atmospheric particulate matter from a city in southeastern Brazil impacted by biomass burning. CHEMOSPHERE 2023; 338:139484. [PMID: 37442389 DOI: 10.1016/j.chemosphere.2023.139484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The effects of PM10 on human health were investigated using samples collected in São Carlos city (São Paulo state), by the determination of the concentrations of PAHs and derivatives, together with evaluations of cytotoxicity and the formation of ROS in in vitro tests. In 2016, the mean concentrations of PM10, ΣPAHs, Σoxy-PAHs, Σnitro-PAHs, Σsaccharides, and Σions were 21.12 ± 9.90 μg m-3, 1.47 ± 1.70 ng m-3, 0.37 ± 0.31 ng m-3, 0.84 ng m-3, 119.91 ± 62.14 ng m-3, and 5.66 ± 4.52 μg m-3, respectively. The PM10 concentrations did not exceed the limit thresholds set by national legislation, however, the annual lung cancer risk calculated was 2.59 ± 1.22 cases per 100,000 people, in the dry season, which accounts for the annual risk (April to September). Moreover, the carcinogenic activities of the PAHs mixture were more than 1000-fold higher in the dry season (dry season: BaPeq = 0.30 ng m-3; wet season BaPeq = 0.02 ng m-3). The concentrations of most analytes were also higher during the dry season, as had already been demonstrated in the same city. This was due to reductions in precipitation, relative humidity and air temperature, and increased biomass burning, which was the main source of PM10 in the city in 2016 (contribution rate of more than 50%). Toxicological results also showed the negative impacts of PM10, exposure to PM10 extracts for 72 h reduced the viability of A549 and MRC5 cells, and the formation of ROS was observed. The cellular responses obtained using combined and individual extracts of PM10 differed and were sometimes associated with specific compounds. These demonstrate the importance of monitoring PM toxicity using different approaches and the main anthropogenic sources' contribution. Therefore, to improve air quality and human health, existing legislation needs to be modified to incorporate these tests.
Collapse
Affiliation(s)
| | - Jonatas S Carvalho
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Renata R Miranda
- Nanomedicine and Nanotoxicology Group, São Carlos Physics Institute, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Mauro A Lima
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Fillipe V Rocha
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Physics Institute, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Roberta C Urban
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom.
| |
Collapse
|
3
|
Carvalho JS, do Nascimento RDKS, Cintra JVFDRF, da Rosa NLC, Grosseli GM, Fadini PS, Urban RC. Source apportionment and health impact assessment of atmospheric particulate matter in the city of São Carlos, Brazil. CHEMOSPHERE 2023; 326:138450. [PMID: 36940826 DOI: 10.1016/j.chemosphere.2023.138450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
In this study, positive matrix factorization method was used for source apportionment of PM10 in the city of São Carlos from 2015 to 2018. The annual mean concentrations of PM10, 15 PAHs, 4 oxy-PAHs, 6 nitro-PAHs, 21 saccharides, and 17 ions in these samples were in the ranges 18.1 ± 6.99 to 25.0 ± 11.3 μg m-3 for PM10, 9.80 × 10-1 ± 2.06 to 2.03 ± 8.54 × 10-1 ng m-3 for ΣPAHs, 83.9 ± 35.7 to 683 ± 521 pg m-3 for Σoxy-PAHs, 1.79 × 10-2 ± 1.23 × 10-1 to 7.12 ± 4.90 ng m-3 for Σnitro-PAHs, 83.3 ± 44.7 to 142 ± 85.9 ng m-3 for Σsaccharides, and 3.80 ± 1.54 to 5.66 ± 4.52 μg m-3 for Σions. For most species, the concentrations were higher in the dry season than in the rainy. This was related not only to the low rainfall and relative humidity characteristic of the dry season but also to an increase in fire spots recorded in the region between April and September every year from 2015 to 2018. A 4-factor solution provided the best description of the dataset, with the four identified sources of PM10 being soil resuspension (28%), biogenic emissions (27%), biomass burning (27%), and vehicle exhaust together with secondary PM (18%). Although the PM10 concentrations were not above the limit established by local legislation, the epidemiological study showed that by reducing PM2.5 concentrations to the level recommended by the WHO, approximately 35 premature deaths per 100,000 population could be avoided annually. The results revealed that biomass burning continues to be one of the main anthropic sources of emissions to the atmosphere in the region, so it needs to be incorporated into the existing guidelines and policies to reduce the concentration of particulate matter to within the limits recommended by the WHO, in order to avoid premature deaths.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro Sergio Fadini
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Roberta Cerasi Urban
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Vargas VMF, da Silva Júnior FMR, Silva Pereira TD, Silva CSD, Coronas MV. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:172-199. [PMID: 36775848 DOI: 10.1080/10937404.2023.2175092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained. The articles were classified into three categories: (1) studies with plants and animals, (2) in vitro studies, and (3) human biomonitoring. The investigations were conducted in 11 of 27 Brazilian states with the highest prevalence in the southeast and south regions. Only 5 investigations focused on the effects of burning biomass on the quality of outdoor air. Plants, especially Tradescantia pallida, were the main air pollution biomonitoring tool. When available, a significant association between levels of air pollutants and genetic damage was described. Among the in vitro studies, Salmonella/microsome is the most used test to evaluate mutagenesis of outdoor air in Brazil (n = 26). Human biomonitoring studies were the least frequent category (n = 18). Most of the investigations utilized micronucleus bioassay, in oral mucosa cells (n = 15) and lymphocytes (n = 5), and the comet assay (n = 6). The analysis in this study points to the existence of gaps in genotoxicity studies and our findings indicate that future studies need to address the variety of potential sources of pollution existing in Brazil. In addition to extent of the impacts, consideration should be given to the enormous Brazilian biodiversity, as well as the determination of the role of socioeconomic inequality of the population in the observed outcomes.
Collapse
Affiliation(s)
- Vera Maria Ferrão Vargas
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | | | - Tatiana da Silva Pereira
- Laboratório de Aquicultura de Peixes Ornamentais do Xingu, Universidade Federal do Pará (UFPA), Altamira, PA, Brazil
| | - Cristiane Silva da Silva
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
- Instituto Federal de Educação, Ciênciae Tecnologia do Rio Grande do Sul (IFRS), Canoas, RS, Brazil
| | - Mariana Vieira Coronas
- Coordenaç'ão Acad"êmica, Universidade Federal de Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil
| |
Collapse
|
5
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
6
|
Wang Y, Zhang H, Zhang X, Bai P, Neroda A, Mishukov VF, Zhang L, Hayakawa K, Nagao S, Tang N. PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2878. [PMID: 35270572 PMCID: PMC8910546 DOI: 10.3390/ijerph19052878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Total suspended particles (TSP) were collected in Vladivostok, Russia, which is a typical port city. This study investigated the concentration, potential sources, and long-term variation in particle PAHs and NPAHs in the atmosphere of Vladivostok. The PAH and NPAH concentrations were higher in winter than in summer (PAHs: winter: 18.6 ± 9.80 ng/m3 summer: 0.54 ± 0.21 ng/m3; NPAHs: winter: 143 ± 81.5 pg/m3 summer: 143 ± 81.5 pg/m3). The diagnostic ratios showed that PAHs and NPAHs mainly came from vehicle emissions in both seasons, while heating systems were the main source of air pollution in winter. The TEQ assessment values were 2.90 ng/m3 and 0.06 ng/m3 in winter and summer, respectively, suggesting a significant excess cancer risk in the general population in winter. The ILCR values conveyed a potential carcinogenic risk because the value was between 1 × 10-5 and 1 × 10-7 and ingestion was a main contributor in Vladivostok. However, it is worth noting that the concentrations of PAHs and NPAHs showed an overall downward trend from 1999 to 2020. An important reason for this is the cogenerations project implemented by the Far Eastern Center for Strategic Research on Fuel and Energy Complex Development in 2010. This research clarified the latest variations in PAHs and NPAHs to provide continuous observation data for future chemical reaction or model prediction research.
Collapse
Affiliation(s)
- Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 9201192, Japan; (Y.W.); (H.Z.); (X.Z.); (P.B.)
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 9201192, Japan; (Y.W.); (H.Z.); (X.Z.); (P.B.)
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 9201192, Japan; (Y.W.); (H.Z.); (X.Z.); (P.B.)
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 9201192, Japan; (Y.W.); (H.Z.); (X.Z.); (P.B.)
| | - Andrey Neroda
- Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.N.); (V.F.M.)
| | - Vassily F. Mishukov
- Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.N.); (V.F.M.)
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 9201192, Japan; (L.Z.); (K.H.); (S.N.)
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 9201192, Japan; (L.Z.); (K.H.); (S.N.)
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 9201192, Japan; (L.Z.); (K.H.); (S.N.)
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 9201192, Japan; (L.Z.); (K.H.); (S.N.)
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 9201192, Japan
| |
Collapse
|
7
|
Block ML, Kodavanti UP. The Use of Standardized Diesel Exhaust Particles in Alzheimer's Disease Research. J Alzheimers Dis 2021; 84:607-608. [PMID: 34569968 DOI: 10.3233/jad-215201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanisms underlying how urban air pollution exposure conveys Alzheimer's disease risk and affects plaque pathology is largely unknown. Because particulate matter, the particle component of urban air pollution, varies across location, pollution source, and time, a single model representative of all ambient particulate matter is unfeasible for research investigating the role of ar pollution in central nervous system diseases. More specifically, the investigation of several models of particulate matter with enrichment of source-specific components are essential to employ, in order to more fully understand what characteristics of particulate matter affects Alzheimer's disease, including standardized diesel exhaust particles.
Collapse
Affiliation(s)
- Michelle L Block
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|