1
|
Zhao Q, Wang B, Chao W, Cheng J, Zhang Y, Zhang H, Gan Z. Numerical simulation and exergy analysis of a single-stage GM cryocooler. Heliyon 2023; 9:e18479. [PMID: 37539123 PMCID: PMC10393757 DOI: 10.1016/j.heliyon.2023.e18479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Improving the efficiency of the GM cryocoolers is of great importance for energy saving and CO2 emission reduction due to the large amount of cryocoolers installed in the emerging fields of semiconductor manufacture and High Temperature Superconductors (HTS) cooling. Previous studies mainly focused on the losses analysis and optimization on the part of cold head, but the details of losses distribution in the parts of compressor and rotary valve were seldom carried out. In this paper, a numerical model of a single stage GM cryocooler including compressor, rotary valve and expander is built, and the feasibility of the model is verified by the experimental results. The losses characteristics of the whole cryocooler are studied based on the exergy analysis method with the help of the numerical model. The results indicate that the main losses are occurred in compressor and rotary valve, the value of exergy loss in compressor decrease with the cooling temperature, and accounts for more than 60% at all cooling temperature. The loss in rotary valve accounts for about 20% of the input electric power, and it does not significantly vary at different cooling temperatures. Pressure drop dominates the loss in the compressor and rotary valve. The insufficient heat exchange between the working gas and regenerative material is the main loss in regenerator, and the losses in regenerator increase significantly with the decrease of cooling temperature when the compressor and rotary valve are fixed. This study provides useful guides for the optimization of GM-type cryocoolers.
Collapse
Affiliation(s)
- Qinyu Zhao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Wang
- Cryogenic Center, Hangzhou City University, Hangzhou 310015, China
| | - Wei Chao
- Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- CSIC Pride (Nanjing) Cryogenic Technology Co., Ltd. Nanjing 211106, China
| | - Jun Cheng
- Cryogenic Center, Hangzhou City University, Hangzhou 310015, China
| | - Yanrui Zhang
- Cryogenic Center, Hangzhou City University, Hangzhou 310015, China
| | - Hua Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhihua Gan
- Cryogenic Center, Hangzhou City University, Hangzhou 310015, China
- Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|
3
|
Lamprea Pineda PA, Demeestere K, Toledo M, Van Langenhove H, Walgraeve C. Enhanced removal of hydrophobic volatile organic compounds in biofilters and biotrickling filters: A review on the use of surfactants and the addition of hydrophilic compounds. CHEMOSPHERE 2021; 279:130757. [PMID: 34134429 DOI: 10.1016/j.chemosphere.2021.130757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The use of biological reactors to remove volatile organic compounds (VOCs) from waste gas streams has proven to be a cost-effective and sustainable technique. However, hydrophobic VOCs exhibit low removal, mainly due to their limited bioavailability for the microorganisms. Different strategies to enhance their removal in bio(trickling)filters have been developed with promising results. In this review, two strategies, i.e. the use of surfactants and hydrophilic compounds, for enhancing the removal of hydrophobic VOCs in bio(trickling)filters are discussed. The complexity of the processes and mechanisms behind both strategies are addressed to fully understand and exploit their potential and rapid implementation at full-scale. Mass transfer and biological aspects are discussed for each strategy, and an in-depth comparison between studies carried out over the last two decades has been performed. This review identifies additional strategies to further improve the application of (bio)surfactants and/or hydrophilic VOCs, and it provides recommendations for future studies in this field.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Manuel Toledo
- Department of Inorganic Chemistry and Chemical Engineering, Faculty of Science, University of Cordoba (Campus Universitario de Rabanales), Carretera N-IV, Km 396, Marie Curie Building, 14071, Cordoba, Spain.
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| |
Collapse
|
4
|
Dewidar AA, Sorial GA. Effect of surfactin on removal of semi-volatile organic compound: Emphasis on enhanced biofiltration performance. ENVIRONMENTAL RESEARCH 2021; 193:110532. [PMID: 33249037 DOI: 10.1016/j.envres.2020.110532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The performance of a lab-scale biotrickling filter (BTF) inoculated with a mixed fungal consortium was investigated for the simultaneous abatement of 2-ethylhexanol; a hydrophobic semi-volatile organic compound (SVOC), and propylene glycol monomethyl ether (PGME). The BTF performance was investigated in the presence of lipopeptide-type biosurfactant, surfactin. The effect of surfactin on the removal efficiency and elimination capacity was examined at stretched inlet loading rates (LR): 1.04 to 15.7 and 3.2-48 g m-3 h-1 of PGME and 2-ethylhexanol, respectively. Seeding the BTF with 50 mg L-1 of surfactin maintained high and consistent removal efficiencies of PGME and 2-ethylhexanol up to LRs of 15.7 and 32 g m-3 h-1, with removal efficiencies of 98.5 and 99%, respectively. Once the LR of 2-ethylhexanol increased to 48 g m-3 h-1, a substrate inhibition was observed, accompanied by a sudden decrease in removal efficiency from 99.2 to 62.3%. At the same LR, the BTF performance was improved by reseeding 100 mg L-1 of surfactin, hence, reinstated the removal efficiency of 2-ethylhexanol to 92.7% and achieving a maximum elimination capacity of 44.5 g m-3 h-1. This enhanced SVOC uptake rate was further confirmed by a considerable increase in reaction rate constant from 0.005 to 0.017 s-1. A batch study was also conducted at the end of the experimental run to better understand the correlation between surfactin concentrations and the time-dependent partition coefficient of 2-ethylhexanol. Biofilm microbial community structure revealed relative abundancy of 72 and 28% of Trichoderma asperellum and Fusarium solani, respectively. The findings of this study show for the first time that the removal of a semi-VOC such as 2-ethylhexanol is feasible in the presence of surfactin and hence improving the bioavailability of hydrophobic semi-VOC.
Collapse
Affiliation(s)
- Assem A Dewidar
- Department of Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - George A Sorial
- Department of Chemical and Environmental Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Li T, Li H, Li C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. CHEMOSPHERE 2020; 250:126338. [PMID: 32126329 DOI: 10.1016/j.chemosphere.2020.126338] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Chlorinated volatile organic compounds (Cl-VOCs) waste air is a kind of typical recalcitrant organic compounds, which poses a great threat to the ecological environment and human health. At present, the biotechnology is considered as a potential strategy for the Cl-VOCs removal due to the advantages of low energy consumption and less possibility of secondary pollution. This work summarizes the recent researches on strains, bioreactors and technology integration. The dominant pure strains for biodegradation of Cl-VOCs are first outlined with a special focus on the co-metabolism of multi-components. It then summarizes two bioreactors (optimized airlift reactor (ALR) and two-phase partitioning bioreactor (TPPB)) and strategy (addition of surfactant) for improvement of biotrickling filter (BTF), which are benefit to achieve the mass transfer enhancement in the removal of hydrophobic Cl-VOCs from waste air. After that, the integration technologies, such as magnetic field (MF)-BTF, non-thermal plasma (NTP)/ultraviolet light (UV)-BTF, and microbial electrolytic cells (MEC), are elucidated, which provide opportunities for complete mineralization of Cl-VOCs in a more efficient, energy-saving and economical way. Finally, current challenges and a perspective of future research on biotechnology for Cl-VOCs removal are thoroughly discussed.
Collapse
Affiliation(s)
- Tong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China.
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300000, China
| |
Collapse
|