1
|
Ferrer-Ruiz A, Moreno-Naranjo JM, Rodríguez-Pérez L, Ramírez-Barroso S, Martín N, Herranz MÁ. n-Type Fullerene-Carbon Dots: Synthesis and Electrochemical and Photophysical Properties. Chemistry 2024; 30:e202302850. [PMID: 38100513 DOI: 10.1002/chem.202302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
The covalent incorporation of C60 and C70 derivatives of the well-known n-type organic semiconductor PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) onto carbon dots (CD) is described. Morphological and structural characterization reveal combined features of both pristine starting materials (CD and PCBM). Electrochemical investigations evidenced the existence of additional reduction processes to that of CD or PCBM precursors, showing rich electron-acceptor capabilities, with multistep processes in an affordable and narrow electrochemical window (ca. 1.5 V). Electronic communication in the obtained nanoconjugated species were derived from steady-state absorption and emission spectroscopies, which showed bathochromically shifted absorptions and emissions well entering the red region. Finally, the lower fluorescence quantum yield of CD-PCBM nanoconjugates, compared with CD, and the fast decay of the observed emission of CD, support the existence of an electronic communication between both CD and PCBM units in the excited state.
Collapse
Affiliation(s)
- Andrés Ferrer-Ruiz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Juan Manuel Moreno-Naranjo
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London White City Campus, London, UK
| | - Laura Rodríguez-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sergio Ramírez-Barroso
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - María Ángeles Herranz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
2
|
Uceta H, Cabrera-Espinoza A, Barrejón M, Sánchez JG, Gutierrez-Fernandez E, Kosta I, Martín J, Collavini S, Martínez-Ferrero E, Langa F, Delgado JL. p-Type Functionalized Carbon Nanohorns and Nanotubes in Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45212-45228. [PMID: 37672775 PMCID: PMC10540139 DOI: 10.1021/acsami.3c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
The incorporation of p-type functionalized carbon nanohorns (CNHs) in perovskite solar cells (PSCs) and their comparison with p-type functionalized single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) are reported in this study for the first time. These p-type functionalized carbon nanomaterial (CNM) derivatives were successfully synthesized by [2 + 1] cycloaddition reaction with nitrenes formed from triphenylamine (TPA) and 9-phenyl carbazole (Cz)-based azides, yielding CNHs-TPA, CNHs-Cz, SWCNTs-Cz, SWCNTs-TPA, DWCNTs-TPA, and DWCNTs-Cz. These six novel CNMs were incorporated into the spiro-OMeTAD-based hole transport layer (HTL) to evaluate their impact on regular mesoporous PSCs. The photovoltaic results indicate that all p-type functionalized CNMs significantly improve the power conversion efficiency (PCE), mainly by enhancing the short-circuit current density (Jsc) and fill factor (FF). TPA-functionalized derivatives increased the PCE by 12-17% compared to the control device without CNMs, while Cz-functionalized derivatives resulted in a PCE increase of 4-8%. Devices prepared with p-type functionalized CNHs exhibited a slightly better PCE compared with those based on SWCNTs and DWCNTs derivatives. The increase in hole mobility of spiro-OMeTAD, additional p-type doping, better energy alignment with the perovskite layer, and enhanced morphology and contact interface play important roles in enhancing the performance of the device. Furthermore, the incorporation of p-type functionalized CNMs into the spiro-OMeTAD layer increased device stability by improving the hydrophobicity of the layer and enhancing the hole transport across the MAPI/spiro-OMeTAD interface. After 28 days under ambient conditions and darkness, TPA-functionalized CNMs maintained the performance of the device by over 90%, while Cz-functionalized CNMs preserved it between 75 and 85%.
Collapse
Affiliation(s)
- Helena Uceta
- Instituto
de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, Avenida Carlos III S/N, Toledo 45071, Spain
| | - Andrea Cabrera-Espinoza
- POLYMAT, University
of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San
Sebastián 20018, Spain
| | - Myriam Barrejón
- Instituto
de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, Avenida Carlos III S/N, Toledo 45071, Spain
| | - José G. Sánchez
- Institute
of Chemical Research of Catalonia-The Barcelona Institute of Science
and Technology (ICIQ-BIST), Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University
of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San
Sebastián 20018, Spain
| | - Ivet Kosta
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Paseo Miramón 196, Donostia/San Sebastián 20014, Spain
| | - Jaime Martín
- POLYMAT, University
of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San
Sebastián 20018, Spain
| | - Silvia Collavini
- POLYMAT, University
of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San
Sebastián 20018, Spain
| | - Eugenia Martínez-Ferrero
- Institute
of Chemical Research of Catalonia-The Barcelona Institute of Science
and Technology (ICIQ-BIST), Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Fernando Langa
- Instituto
de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, Avenida Carlos III S/N, Toledo 45071, Spain
| | - Juan Luis Delgado
- POLYMAT, University
of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia/San
Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
3
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|