1
|
Dean JB, Stavitzski NM. The O2-sensitive brain stem, hyperoxic hyperventilation, and CNS oxygen toxicity. Front Physiol 2022; 13:921470. [PMID: 35957982 PMCID: PMC9360621 DOI: 10.3389/fphys.2022.921470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system oxygen toxicity (CNS-OT) is a complex disorder that presents, initially, as a sequence of cardio-respiratory abnormalities and nonconvulsive signs and symptoms (S/Sx) of brain stem origin that culminate in generalized seizures, loss of consciousness, and postictal cardiogenic pulmonary edema. The risk of CNS-OT and its antecedent “early toxic indications” are what limits the use of hyperbaric oxygen (HBO2) in hyperbaric and undersea medicine. The purpose of this review is to illustrate, based on animal research, how the temporal pattern of abnormal brain stem responses that precedes an “oxtox hit” provides researchers a window into the early neurological events underlying seizure genesis. Specifically, we focus on the phenomenon of hyperoxic hyperventilation, and the medullary neurons presumed to contribute in large part to this paradoxical respiratory response; neurons in the caudal Solitary complex (cSC) of the dorsomedial medulla, including putative CO2 chemoreceptor neurons. The electrophysiological and redox properties of O2-/CO2-sensitive cSC neurons identified in rat brain slice experiments are summarized. Additionally, evidence is summarized that supports the working hypothesis that seizure genesis originates in subcortical areas and involves cardio-respiratory centers and cranial nerve nuclei in the hind brain (brainstem and cerebellum) based on, respectively, the complex temporal pattern of abnormal cardio-respiratory responses and various nonconvulsive S/Sx that precede seizures during exposure to HBO2.
Collapse
|
2
|
Wei L, Boutouil H, R Gerbatin R, Mamad O, Heiland M, Reschke CR, Del Gallo F, F Fabene P, Henshall DC, Lowery M, Morris G, Mooney C. Detection of spontaneous seizures in EEGs in multiple experimental mouse models of epilepsy. J Neural Eng 2021; 18. [PMID: 34607322 DOI: 10.1088/1741-2552/ac2ca0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
Objective.Electroencephalography (EEG) is a key tool for non-invasive recording of brain activity and the diagnosis of epilepsy. EEG monitoring is also widely employed in rodent models to track epilepsy development and evaluate experimental therapies and interventions. Whereas automated seizure detection algorithms have been developed for clinical EEG, preclinical versions face challenges of inter-model differences and lack of EEG standardization, leaving researchers relying on time-consuming visual annotation of signals.Approach.In this study, a machine learning-based seizure detection approach, 'Epi-AI', which can semi-automate EEG analysis in multiple mouse models of epilepsy was developed. Twenty-six mice with a total EEG recording duration of 6451 h were used to develop and test the Epi-AI approach. EEG recordings were obtained from two mouse models of kainic acid-induced epilepsy (Models I and III), a genetic model of Dravet syndrome (Model II) and a pilocarpine mouse model of epilepsy (Model IV). The Epi-AI algorithm was compared against two threshold-based approaches for seizure detection, a local Teager-Kaiser energy operator (TKEO) approach and a global Teager-Kaiser energy operator-discrete wavelet transform (TKEO-DWT) combination approach.Main results.Epi-AI demonstrated a superior sensitivity, 91.4%-98.8%, and specificity, 93.1%-98.8%, in Models I-III, to both of the threshold-based approaches which performed well on individual mouse models but did not generalise well across models. The performance of the TKEO approach in Models I-III ranged from 66.9%-91.3% sensitivity and 60.8%-97.5% specificity to detect spontaneous seizures when compared with expert annotations. The sensitivity and specificity of the TKEO-DWT approach were marginally better than the TKEO approach in Models I-III at 73.2%-80.1% and 75.8%-98.1%, respectively. When tested on EEG from Model IV which was not used in developing the Epi-AI approach, Epi-AI was able to identify seizures with 76.3% sensitivity and 98.1% specificity.Significance.Epi-AI has the potential to provide fast, objective and reproducible semi-automated analysis of multiple types of seizure in long-duration EEG recordings in rodents.
Collapse
Affiliation(s)
- Lan Wei
- School of Computer Science, University College Dublin, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Halima Boutouil
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Rogério R Gerbatin
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Omar Mamad
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mona Heiland
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cristina R Reschke
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,School of Pharmacy, University of Camerino, Macerata, Italy
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - David C Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Madeleine Lowery
- School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Gareth Morris
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,These authors contributed equally
| | - Catherine Mooney
- School of Computer Science, University College Dublin, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,These authors contributed equally
| |
Collapse
|
3
|
Ciarlone GE, Hinojo CM, Stavitzski NM, Dean JB. CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings. Redox Biol 2019; 27:101159. [PMID: 30902504 PMCID: PMC6859559 DOI: 10.1016/j.redox.2019.101159] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022] Open
Abstract
Hyperbaric oxygen (HBO2) is breathed during hyperbaric oxygen therapy and during certain undersea pursuits in diving and submarine operations. What limits exposure to HBO2 in these situations is the acute onset of central nervous system oxygen toxicity (CNS-OT) following a latent period of safe oxygen breathing. CNS-OT presents as various non-convulsive signs and symptoms, many of which appear to be of brainstem origin involving cranial nerve nuclei and autonomic and cardiorespiratory centers, which ultimately spread to higher cortical centers and terminate as generalized tonic-clonic seizures. The initial safe latent period makes the use of HBO2 practical in hyperbaric and undersea medicine; however, the latent period is highly variable between individuals and within the same individual on different days, making it difficult to predict onset of toxic indications. Consequently, currently accepted guidelines for safe HBO2 exposure are highly conservative. This review examines the disorder of CNS-OT and summarizes current ideas on its underlying pathophysiology, including specific areas of the CNS and fundamental neural and redox signaling mechanisms that are thought to be involved in seizure genesis and propagation. In addition, conditions that accelerate the onset of seizures are discussed, as are current mitigation strategies under investigation for neuroprotection against redox stress while breathing HBO2 that extend the latent period, thus enabling safer and longer exposures for diving and medical therapies.
Collapse
Affiliation(s)
- Geoffrey E Ciarlone
- Undersea Medicine Department, Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD, USA
| | - Christopher M Hinojo
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nicole M Stavitzski
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Zhou R, Jiang G, Tian X, Wang X. Progress in the molecular mechanisms of genetic epilepsies using patient-induced pluripotent stem cells. Epilepsia Open 2018; 3:331-339. [PMID: 30187003 PMCID: PMC6119748 DOI: 10.1002/epi4.12238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Research findings on the molecular mechanisms of epilepsy almost always originate from animal experiments, and the development of induced pluripotent stem cell (iPSC) technology allows the use of human cells with genetic defects for studying the molecular mechanisms of genetic epilepsy (GE) for the first time. With iPSC technology, terminally differentiated cells collected from GE patients with specific genetic etiologies can be differentiated into many relevant cell subtypes that carry all of the GE patient's genetic information. iPSCs have opened up a new research field involving the pathogenesis of GE. Using this approach, studies have found that gene mutations induce GE by altering the balance between neuronal excitation and inhibition, which is associated. among other factors, with neuronal developmental disturbances, ion channel abnormalities, and synaptic dysfunction. Simultaneously, astrocyte activation, mitochondrial dysfunction, and abnormal signaling pathway activity are also important factors in the molecular mechanisms of GE.
Collapse
Affiliation(s)
- Ruijiao Zhou
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Guohui Jiang
- Department of Neurology Institute of Neurological Diseases Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Xin Tian
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| | - Xuefeng Wang
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University Chongqing Key Laboratory of Neurology Chongqing China
| |
Collapse
|
5
|
Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2017; 59:358-368. [PMID: 29265344 DOI: 10.1111/epi.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1-/- model of severe epilepsy and the Kcnq1A340E/A340E model of mild epilepsy. METHODS A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice. RESULTS Behaviorally, Kcna1-/- mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1-/- mice by ~60%. In Kcnq1A340E/A340E mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1-/- brains, suggesting that drug target alterations may contribute to the altered drug responses. SIGNIFICANCE This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
Collapse
Affiliation(s)
- Stephanie L Vanhoof-Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
6
|
Multidimensional Genetic Analysis of Repeated Seizures in the Hybrid Mouse Diversity Panel Reveals a Novel Epileptogenesis Susceptibility Locus. G3-GENES GENOMES GENETICS 2017; 7:2545-2558. [PMID: 28620084 PMCID: PMC5555461 DOI: 10.1534/g3.117.042234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy has many causes and comorbidities affecting as many as 4% of people in their lifetime. Both idiopathic and symptomatic epilepsies are highly heritable, but genetic factors are difficult to characterize among humans due to complex disease etiologies. Rodent genetic studies have been critical to the discovery of seizure susceptibility loci, including Kcnj10 mutations identified in both mouse and human cohorts. However, genetic analyses of epilepsy phenotypes in mice to date have been carried out as acute studies in seizure-naive animals or in Mendelian models of epilepsy, while humans with epilepsy have a history of recurrent seizures that also modify brain physiology. We have applied a repeated seizure model to a genetic reference population, following seizure susceptibility over a 36-d period. Initial differences in generalized seizure threshold among the Hybrid Mouse Diversity Panel (HMDP) were associated with a well-characterized seizure susceptibility locus found in mice: Seizure susceptibility 1. Remarkably, Szs1 influence diminished as subsequent induced seizures had diminishing latencies in certain HMDP strains. Administration of eight seizures, followed by an incubation period and an induced retest seizure, revealed novel associations within the calmodulin-binding transcription activator 1, Camta1. Using systems genetics, we have identified four candidate genes that are differentially expressed between seizure-sensitive and -resistant strains close to our novel Epileptogenesis susceptibility factor 1 (Esf1) locus that may act individually or as a coordinated response to the neuronal stress of seizures.
Collapse
|
7
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
8
|
Abstract
Development of spontaneous seizures is the hallmark of human epilepsy. There is a critical need for new epilepsy models in order to elucidate mechanisms responsible for leading to the development of spontaneous seizures and for testing new anti-epileptic compounds. Moreover, rodent models of epilepsy have clearly demonstrated that there are two independent seizure systems in the brain: 1) the forebrain seizure network required for the expression of clonic seizures mediated by forebrain neurocircuitry, and 2) the brainstem seizure network necessary for the expression of brainstem or tonic seizures mediated by brainstem neurocircuitry. In seizure naïve animals, these two systems are separate, but developing models that can explore the intersection of the forebrain and brainstem seizure systems or for elucidating mechanisms responsible for bringing these two seizure systems together may aid in our understanding of: 1) how seizures can become more complex overtime, and 2) sudden unexpected death in epilepsy (SUDEP) since propagation of seizure discharge from the forebrain seizure system to the brainstem seizure system may have an important role in SUDEP because many cardiorespiratory systems are localized in the brainstem. The repeated flurothyl seizure model of epileptogenesis, as described here, may aid in providing insight into these important epilepsy issues in addition to understanding how spontaneous seizures develop.
Collapse
Affiliation(s)
- Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|