1
|
Tsai CW, Ho SY, Chen IC, Chang KC, Chen HJ, Tsai FC, Liou HH. Abnormal increased mTOR signaling regulates seizure threshold in Dravet syndrome. Neuropharmacology 2024; 262:110166. [PMID: 39374769 DOI: 10.1016/j.neuropharm.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Excessive activation of mTOR has been observed in the brains of mouse models for Dravet syndrome. We aim to confirm whether that the overactivation of mTOR contributes to the neuropathological changes leading to epileptogenesis and neurobehavior deficits to support a novel pharmacological therapeutic approach for Dravet syndrome. The mTOR inhibitor everolimus, as a clinical antiseizure medication, was utilized to investigate whether mTOR is involved in hyperthermia-induced seizures, anxiety-like, and autism-like behaviors, as well as to explore potential pathogenic mechanisms in Scn1aE1099X/+ mice, a model of Dravet syndrome. First, we found that mTOR signaling was upregulated in hippocampus tissues and neural cultures derived from Scn1aE1099X/+ mice prior to seizure onset. Behaviorally, everolimus increased the seizure threshold and improved anxiety-like and autism-like behaviors in Scn1aE1099X/+ mice. Electrophysiologically, everolimus reduced the frequency of spontaneous excitatory postsynaptic currents in dentate granule neurons from Scn1aE1099X/+ mice. Biochemically, everolimus prevented hyperthermia-induced phosphorylation of hippocampal S6 ribosome in hippocampus, and it delayed hyperthermia-induced increase of cytosolic Ca2+ level in primary neuronal cultures derived from Scn1aE1099X/+ mice. Our results provide the evidence that overactivated mTOR as an important neuropathological change which regulates seizure threshold, impairments of neurobehavior, neuronal glutamatergic transmission and intracellular Ca2+ levels in Scn1aE1099X/+ mice. Inhibition of mTOR is a potential pharmacological therapeutic approach.
Collapse
Affiliation(s)
- Che-Wen Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Shih-Yin Ho
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - I Chun Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Horng-Huei Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
3
|
Kirkeby K, Cockerell I, Christensen J, Hoei-Hansen CE, Holst L, Fredriksen MG, Lund C, Johannessen Landmark C. Pharmacokinetic variability of everolimus and impact of concomitant antiseizure medications in patients with tuberous sclerosis complex: A retrospective study of therapeutic drug monitoring data in Denmark and Norway. Medicine (Baltimore) 2024; 103:e39244. [PMID: 39121325 PMCID: PMC11315474 DOI: 10.1097/md.0000000000039244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 08/11/2024] Open
Abstract
The mTOR-inhibitor everolimus is a precision drug with antiepileptogenic properties approved for treatment of epilepsy in persons with tuberous sclerosis complex (TSC) in combination with other antiseizure medications (ASMs). However, the pharmacokinetic variability of everolimus is scarcely described, and the available information on pharmacokinetic interactions is scarce. The purpose of this study was to investigate pharmacokinetic variability of everolimus in patients with TSC, and the impact of age, sex and comedication. In this retrospective observational study we used anonymized data from medical records of patients with TSC using everolimus in Norway and Denmark, 2012 to 2020. Long-term therapeutic drug monitoring (TDM) identified inter-patient and intra-patient variability. The study included 59 patients, (36 females (61%)), median age 22 (range 3-59 years). Polytherapy was used in 50 patients (85%). The most frequently used ASMs were lamotrigine (n = 21), valproate (n = 17), and levetiracetam (n = 13). Blood concentrations of everolimus were measured in all patients. Pharmacokinetic variability of everolimus between patients was extensive, as demonstrated by a 24-fold variability from minimum-maximum concentration/dose (C/D)-ratios. The coefficient of variation (CV) for intra-patient (n = 59) and inter-patient variability (n = 47, ≥3 measurements) was 40% and 43%, respectively. The C/D-ratio of everolimus was 50% lower in 13 patients (22%) using enzyme-inducing ASMs compared to the 30 patients who did not (0.7 vs 1.4 ng/mL mg, P < .05). Age and sex were not significantly associated with changes in C/D-ratios of everolimus. Long-term TDM identified extensive variability in concentrations over time for everolimus both within and between patients, where comedication with enzyme-inducing ASMs was an important contributing factor. The findings suggest a need for TDM in patients with TSC treated with everolimus.
Collapse
Affiliation(s)
- Kjersti Kirkeby
- Department of Pharmacy, Faculty of Health Sciences, Institute of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Ine Cockerell
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
| | - Christina Engel Hoei-Hansen
- Department of Pediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Holst
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
| | - Mikkel G. Fredriksen
- Department of Pediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Caroline Lund
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Institute of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- The National Centre for Epilepsy, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway
- Department of Pharmacology, Section for Clinical Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
5
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
6
|
Lee M, Kim EJ, Kim MJ, Yum MS. Rapamycin Cannot Reduce Seizure Susceptibility in Infantile Rats with Malformations of Cortical Development Lacking mTORC1 Activation. Mol Neurobiol 2022; 59:7439-7449. [PMID: 36194361 DOI: 10.1007/s12035-022-03033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
Abstract
The mechanistic target of the rapamycin (mTOR) pathway is involved in cortical development. However, the efficacy of mTOR inhibitors in malformations of cortical dysplasia (MCD) outside of the tuberous sclerosis complex is unknown. We selected the MCD rat model with prenatal MAM exposure to test the efficacy of mTOR inhibitors in MCDs. We explored the early cortical changes of mTOR pathway protein expression in rats aged P15. We also monitored the early treatment effect of the mTOR inhibitor, rapamycin, on N-methyl-D-aspartate (NMDA)-induced spasms at P15 and their behavior in the juvenile stage. In vivo MR spectroscopy was performed after rapamycin treatment and compared with vehicle controls. There was no difference in mTORC1 pathway protein expression between MAM-exposed MCD rats and controls at P15, and prolonged treatment of rapamycin had no impact on NMDA-induced spasms despite poor weight gain. Prenatal MAM-exposed juvenile rats treated with rapamycin showed increased social approaching and freezing behavior during habituation. MR spectroscopy showed altered neurometabolites, including Gln, Glu+Gln, Tau, and Cr. Despite behavioral changes and in vivo neurometabolic alteration with early prolonged rapamycin treatment, rapamycin had no effect on spasms susceptibility in prenatal MAM-exposed infantile rats with MCD without mTORC1 activation. For MAM-exposed MCD rats without mTORC1 activation, treatment options outside of mTOR pathway inhibitors should be explored.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Eun-Jin Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, 88 Olympic-ro, Songpa-ku, Seoul, 05505, Korea
| | - Mi-Sun Yum
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea. .,Department of Pediatrics, Asan Medical Center Children's Hospital, 88 Olympic-ro, Songpa-ku, Seoul, 05505, Korea.
| |
Collapse
|
7
|
Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol 2022; 21:843-856. [DOI: 10.1016/s1474-4422(22)00213-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022]
|
8
|
Targeted Therapies in Rare Brain Tumours. Int J Mol Sci 2021; 22:ijms22157949. [PMID: 34360713 PMCID: PMC8348084 DOI: 10.3390/ijms22157949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.
Collapse
|
9
|
Abstract
INTRODUCTION Focal cortical dysplasias (FCDs) represent the most common etiology in pediatric drug-resistant focal epilepsies undergoing surgical treatment. The localization, extent and histopathological features of FCDs are considerably variable. Somatic mosaic mutations of genes that encode proteins in the PI3K-AKTmTOR pathway, which also includes the tuberous sclerosis associated genes TSC1 and TSC2, have been implicated in FCD type II in a substantial subset of patients. Surgery is the principal therapeutic option for FCD-related epilepsy. Advanced neurophysiological and neuroimaging techniques have improved surgical outcome and reduced the risk of postsurgical deficits. Pharmacological MTOR inhibitors are being tested in clinical trials and might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease, used alone or in combination with surgery. AREAS COVERED This review will critically analyze the advances in the diagnosis and treatment of FCDs, with a special focus on the novel therapeutic options prompted by a better understanding of their pathophysiology. EXPERT OPINION Focal cortical dysplasia is a main cause of drug-resistant epilepsy, especially in children. Novel, personalized approaches are needed to more effectively treat FCD-related epilepsy and its cognitive consequences.
Collapse
Affiliation(s)
- Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| |
Collapse
|
10
|
Davis KA, Dodeja AK, Clark A, Hor K, Baker P, Cripe LH, Cripe TP. Use of Cardiac MRI to Assess Antitumor Efficacy of Everolimus in Sporadic Cardiac Rhabdomyoma. Pediatrics 2019; 143:peds.2018-2495. [PMID: 31088894 DOI: 10.1542/peds.2018-2495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
Cardiac rhabdomyoma is the most common neonatal cardiac tumor and is typically associated with tuberous sclerosis complex (TSC). Although these tumors may naturally regress, some patients require surgical resection because of cardiac instability. If not fully resected, patients may also require medical therapy to improve their hemodynamics. Everolimus, a mammalian target of rapamycin inhibitor, has shown promise in reducing rhabdomyoma in patients with TSC, but the drug's impact in patients without TSC has not been reported. Monitoring of tumor response has typically been limited to echocardiograms, which is not ideal given inherent difficulties in three-dimensional measurements. We report a case of sporadic cardiac rhabdomyoma in a neonate treated with everolimus resulting in tumor regression as documented by cardiac MRI. While on everolimus, our patient had an increased incidence of a preexisting arrhythmia, which resolved with planned cessation of therapy, suggesting that close monitoring is imperative in patients with arrhythmia.
Collapse
Affiliation(s)
- Kyle A Davis
- Divisions of Hematology, Oncology, and Blood and Marrow Transplant,
| | | | | | | | - Peter Baker
- Pathology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | | | - Timothy P Cripe
- Divisions of Hematology, Oncology, and Blood and Marrow Transplant
| |
Collapse
|
11
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
12
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|