1
|
Osman EY, Abdelghafar HI, Elsisi AE. TLR4 inhibitors through inhibiting (MYD88-TRIF) pathway, protect against experimentally-induced intestinal (I/R) injury. Int Immunopharmacol 2024; 136:112421. [PMID: 38850786 DOI: 10.1016/j.intimp.2024.112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a serious condition that causes intestinal dysfunction and can be fatal. Previous research has shown that toll-like receptor 4 (TLR4) inhibitors have a protective effect against this injury. This study aimed to investigate the protective effects of TLR4 inhibitors, specifically cyclobenzaprine, ketotifen, amitriptyline, and naltrexone, in rats with intestinal (I/R) injury. Albino rats were divided into seven groups: vehicle control, sham-operated, I/R injury, I/R-cyclobenzaprine (10 mg/kg body weight), I/R-ketotifen (1 mg/kg body weight), I/R-amitriptyline (10 mg/kg body weight), and I/R-naltrexone (4 mg/kg body weight) groups. Anesthetized rats (urethane 1.8 g/kg) underwent 30 min of intestinal ischemia by occluding the superior mesenteric artery (SMA), followed by 2 h of reperfusion. Intestinal tissue samples were collected to measure various parameters, including malondialdehyde (MDA), nitric oxide synthase (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), TLR4, intercellular adhesion molecule-1 (ICAM-1), nuclear factor kappa bp65 (NF-ĸBP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), macrophages CD68, myeloid differentiation factor 88 (MYD88), and toll interleukin receptor-domain-containing adaptor-inducing interferon β (TRIF). The use of TLR4 inhibitors significantly reduced MDA, MPO, and NO levels, while increasing SOD activity. Furthermore, it significantly decreased TLR4, ICAM-1, TNF-α, MCP-1, MYD88, and TRIF levels. These drugs also showed partial restoration of normal cellular structure with reduced inflammation. Additionally, there was a decrease in NF-ĸBP65 and macrophages CD68 staining compared to rats in the I/R groups. This study focuses on how TLR4 inhibitors enhance intestinal function and protect against intestinal (I/R) injury by influencing macrophages CD86 through (MYD88-TRIF) pathway, as well as their effects on oxidation and inflammation.
Collapse
Affiliation(s)
- Enass Y Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hader I Abdelghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ruszczak A, Poznański P, Leśniak A, Łazarczyk M, Skiba D, Nawrocka A, Gaweł K, Paszkiewicz J, Mickael ME, Sacharczuk M. Susceptibility to Pentylenetetrazole-Induced Seizures in Mice with Distinct Activity of the Endogenous Opioid System. Int J Mol Sci 2024; 25:6978. [PMID: 39000086 PMCID: PMC11241619 DOI: 10.3390/ijms25136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.
Collapse
Affiliation(s)
- Anna Ruszczak
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Kinga Gaweł
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| |
Collapse
|
3
|
Rodriguez S, Sharma S, Tiarks G, Peterson Z, Jackson K, Thedens D, Wong A, Keffala-Gerhard D, Mahajan VB, Ferguson PJ, Newell EA, Glykys J, Nickl-Jockschat T, Bassuk AG. Neuroprotective effects of naltrexone in a mouse model of post-traumatic seizures. Sci Rep 2024; 14:13507. [PMID: 38867062 PMCID: PMC11169394 DOI: 10.1038/s41598-024-63942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.
Collapse
Affiliation(s)
- Saul Rodriguez
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Shaunik Sharma
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Grant Tiarks
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Zeru Peterson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kyle Jackson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Daniel Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Angela Wong
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - David Keffala-Gerhard
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Polly J Ferguson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Joseph Glykys
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Liddiard GT, Suryavanshi PS, Glykys J. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex. J Neurosci 2024; 44:e1342232023. [PMID: 38176909 PMCID: PMC10869160 DOI: 10.1523/jneurosci.1342-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.
Collapse
Affiliation(s)
- G T Liddiard
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
| | - P S Suryavanshi
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
| | - J Glykys
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
- Department of Neurology, The University of Iowa, Iowa City 52242, Iowa
| |
Collapse
|
5
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Üstündağ FD, Ünal İ, Üstündağ ÜV, Cansız D, Beler M, Alturfan AA, Tiber PM, Emekli-Alturfan E. Morphine ameliorates pentylenetetrazole-induced locomotor pattern in zebrafish embryos; mechanism involving regulation of opioid receptors, suppression of oxidative stress, and inflammation in epileptogenesis. Toxicol Mech Methods 2023; 33:151-160. [PMID: 35866229 DOI: 10.1080/15376516.2022.2105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zebrafish (Danio rerio) is becoming an increasingly important model in epilepsy research. Pentylenetetrazole (PTZ) is a convulsant agent that induces epileptic seizure-like state in zebrafish and zebrafish embryos and is most commonly used in antiepileptic drug discovery research to evaluate seizure mechanisms. Classical antiepileptic drugs, such as valproic acid (VPA) reduce PTZ-induced epileptiform activities. Opioid system has been suggested to play a role in epileptogenesis. The aim of our study is to determine the effects of morphine in PTZ-induced epilepsy model in zebrafish embryos by evaluating locomotor activity and parameters related to oxidant-antioxidant status, inflammation, and cholinergic system as well as markers of neuronal activity c-fos, bdnf, and opioid receptors. Zebrafish embryos at 72 hpf were exposed to PTZ (20 mM), VPA (1 mM), and Morphine (MOR) (100 µM). MOR and VPA pretreated groups were treated with either MOR (MOR + PTZ) or VPA (VPA + PTZ) for 20 min before PTZ expoure. Locomotor activity was quantified as total distance moved (mm), average speed (mm/sec) and exploration rate (%) and analyzed using ToxTrac tracking programme. Oxidant-antioxidant system parameters, acetylcholinesterase activity, and sialic acid leves were evaluated using spectrophotometric methods. The expression of c-fos, bdnf, oprm1, and oprd1 were evaluated by RT-PCR. MOR pretreatment ameliorated PTZ-induced locomotor pattern as evidenced by improved average speed, exploration rate and distance traveled. We report the restoration of inflammatory and oxidant-antioxidant system parameters, c-fos, bdnf, and opioid receptor oprm1 as the possible mechanisms involved in the ameliorative effect of MOR against PTZ-induced epileptogenic process in zebrafish embryos.
Collapse
Affiliation(s)
- Fümet Duygu Üstündağ
- Department of Biophysics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Mega Tiber
- Department of Biophysics, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Langton RL, Sharma S, Tiarks GC, Bassuk AG, Glykys J. Lacosamide decreases neonatal seizures without increasing apoptosis. Epilepsia 2022; 63:3051-3065. [PMID: 36168798 PMCID: PMC9742288 DOI: 10.1111/epi.17423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Many seizing neonates fail to respond to first-line anticonvulsant medications. Phenobarbital, an allosteric modulator of γ-aminobutyric acid type A (GABAA ) receptors, has low efficacy in treating neonatal seizures and causes neuronal apoptosis. Nonetheless, it is one of the most used anticonvulsants in this age group. In neonatal mice, phenobarbital's poor effectiveness is due in part to high intraneuronal chloride concentration, which causes GABA to exert depolarizing actions. Therefore, another approach to treat neonatal seizures could be to use anticonvulsants that do not rely on GABAergic modulation. We evaluated whether lacosamide decreases seizures in neonatal mice and whether it increases apoptosis in vitro and in vivo. METHODS In vitro, we measured the effect of different lacosamide concentrations on seizure-like activity induced by the pro-convulsant drug 4-aminopyridine in neocortical brain slices (layer IV/V) from neonatal (postnatal day 8-11) and adult (1-1.6 months old) C57BL/6J mice. In vivo, we recorded the effect of different lacosamide concentrations on neonatal behavioral seizures induced by kainic acid. We studied neocortical apoptosis in vitro and in vivo, measuring terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling signal and cleaved-caspase 3. RESULTS Lacosamide reduced epileptiform activity in neocortical brain slices of neonates and adults in a concentration-dependent manner. In vivo, lacosamide reduced the duration and number of behavioral seizures. Lacosamide did not increase total or neuronal apoptosis in the neocortex in vitro or in vivo. SIGNIFICANCE Lacosamide reduces neocortical seizure-like activity in neonatal mice in vitro and in vivo without an acute increase in apoptosis. Our results support the use of lacosamide to treat neonatal seizures, with the advantage of not increasing apoptosis acutely.
Collapse
Affiliation(s)
- Rachel L Langton
- Department of Pediatrics, Division of Child Neurology, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Shaunik Sharma
- Department of Pediatrics, Division of Child Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Grant C Tiarks
- Department of Pediatrics, Division of Child Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Alexander G Bassuk
- Department of Pediatrics, Division of Child Neurology, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.,Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Glykys
- Department of Pediatrics, Division of Child Neurology, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.,Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
de Witte P. Antiseizure activity by opioid receptor antagonism, new evidence. Epilepsia Open 2022; 7:229-230. [PMID: 35531951 PMCID: PMC9159240 DOI: 10.1002/epi4.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, , O&N II Herestraat 49-Box 824, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Moog M, Baraban SC. Clemizole and Trazodone are Effective Antiseizure Treatments in a Zebrafish Model of STXBP1 Disorder. Epilepsia Open 2022; 7:504-511. [PMID: 35451230 PMCID: PMC9436285 DOI: 10.1002/epi4.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity. Larval homozygous stxbp1b zebrafish (4 days post-fertilization) were agarose-embedded and monitored for electrographic seizure activity using a local field recording electrode placed in midbrain. Frequency of ictal-like events was evaluated at baseline and following 45 min of continuous drug exposure (1 mM, bath application). Analysis was performed on coded files by an experimenter blinded to drug treatment and genotype. Phenytoin, valproate, ethosuximide, levetiracetam, and diazepam had no effect on ictal-like event frequency in stxbp1b mutant zebrafish. Clemizole and trazodone decreased ictal-like event frequency in stxbp1b mutant zebrafish by 80% and 83%, respectively. These results suggest that repurposed drugs with serotonin receptor binding affinities could be effective antiseizure treatments. Clemizole and trazodone were previously identified in a larval zebrafish model for Dravet syndrome. Based primarily on these preclinical zebrafish studies, compassionate-use and double-blind clinical trials with both drugs have progressed. The present study extends this approach to a preclinical zebrafish model representing STXBP1-related disorders, and suggests that future clinical studies may be warranted.
Collapse
Affiliation(s)
- Maia Moog
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Scott C. Baraban
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|