Monney J, Dallaire SE, Stoutah L, Fanda L, Mégevand P. Voxeloc: A time-saving graphical user interface for localizing and visualizing stereo-EEG electrodes.
J Neurosci Methods 2024;
407:110154. [PMID:
38697518 DOI:
10.1016/j.jneumeth.2024.110154]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND
Thanks to its unrivalled spatial and temporal resolutions and signal-to-noise ratio, intracranial EEG (iEEG) is becoming a valuable tool in neuroscience research. To attribute functional properties to cortical tissue, it is paramount to be able to determine precisely the localization of each electrode with respect to a patient's brain anatomy. Several software packages or pipelines offer the possibility to localize manually or semi-automatically iEEG electrodes. However, their reliability and ease of use may leave to be desired.
NEW METHOD
Voxeloc (voxel electrode locator) is a Matlab-based graphical user interface to localize and visualize stereo-EEG electrodes. Voxeloc adopts a semi-automated approach to determine the coordinates of each electrode contact, the user only needing to indicate the deep-most contact of each electrode shaft and another point more proximally.
RESULTS
With a deliberately streamlined functionality and intuitive graphical user interface, the main advantages of Voxeloc are ease of use and inter-user reliability. Additionally, oblique slices along the shaft of each electrode can be generated to facilitate the precise localization of each contact. Voxeloc is open-source software and is compatible with the open iEEG-BIDS (Brain Imaging Data Structure) format.
COMPARISON WITH EXISTING METHODS
Localizing full patients' iEEG implants was faster using Voxeloc than two comparable software packages, and the inter-user agreement was better.
CONCLUSIONS
Voxeloc offers an easy-to-use and reliable tool to localize and visualize stereo-EEG electrodes. This will contribute to democratizing neuroscience research using iEEG.
Collapse