1
|
Schlezinger JJ, Heiger-Bernays W, Webster TF. Predicting the Activation of the Androgen Receptor by Mixtures of Ligands Using Generalized Concentration Addition. Toxicol Sci 2021; 177:466-475. [PMID: 32726424 DOI: 10.1093/toxsci/kfaa108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Concentration/dose addition is widely used for compounds that act by similar mechanisms. But it cannot make predictions for mixtures of full and partial agonists for effect levels above that of the least efficacious component. As partial agonists are common, we developed generalized concentration addition, which has been successfully applied to systems in which ligands compete for a single binding site. Here, we applied a pharmacodynamic model for a homodimer receptor system with 2 binding sites, the androgen receptor, that acts according to the classic homodimer activation model: Each cytoplasmic monomer protein binds ligand, undergoes a conformational change that relieves inhibition of dimerization, and binds to DNA response elements as a dimer. We generated individual dose-response data for full (dihydroxytestosterone, BMS564929) and partial (TFM-4AS-1) agonists and a competitive antagonist (MDV3100) using reporter data generated in the MDA-kb2 cell line. We used the Schild method to estimate the binding affinity of MDV3100. Data for individual compounds fit the homodimer pharmacodynamic model well. In the presence of a full agonist, the partial agonist had agonistic effects at low effect levels and antagonistic effects at high levels, as predicted by pharmacological theory. The generalized concentration addition model fits the empirical mixtures data-full/full agonist, full/partial agonist, and full agonist/antagonist-as well or better than relative potency factors or effect summation. The ability of generalized concentration addition to predict the activity of mixtures of different types of androgen receptor ligands is important as a number of environmental compounds act as partial androgen receptor agonists or antagonists.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| |
Collapse
|
2
|
Kenda M, Karas Kuželički N, Iida M, Kojima H, Sollner Dolenc M. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107005. [PMID: 33064576 PMCID: PMC7567334 DOI: 10.1289/ehp6596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals can interfere with hormonal homeostasis and have adverse effects for both humans and the environment. Their identification is increasingly difficult due to lack of adequate toxicological tests. This difficulty is particularly problematic for cosmetic ingredients, because in vivo testing is now banned completely in the European Union. OBJECTIVES The aim was to identify candidate preservatives as endocrine disruptors by in silico methods and to confirm endocrine receptors' activities through nuclear receptors in vitro. METHODS We screened preservatives listed in Annex V in the European Union Regulation on cosmetic products to predict their binding to nuclear receptors using the Endocrine Disruptome and VirtualToxLab™ version 5.8 in silico tools. Five candidate preservatives were further evaluated for androgen receptor (AR), estrogen receptor (ER α ), glucocorticoid receptor (GR), and thyroid receptor (TR) agonist and antagonist activities in cell-based luciferase reporter assays in vitro in AR-EcoScreen, hER α -HeLa- 9903 , MDA-kb2, and GH3.TRE-Luc cell lines. Additionally, assays to test for false positives were used (nonspecific luciferase gene induction and luciferase inhibition). RESULTS Triclocarban had agonist activity on AR and ER α at 1 μ M and antagonist activity on GR at 5 μ M and TR at 1 μ M . Triclosan showed antagonist effects on AR, ER α , GR at 10 μ M and TR at 5 μ M , and bromochlorophene at 1 μ M (AR and TR) and at 10 μ M (ER α and GR). AR antagonist activity of chlorophene was observed [inhibitory concentration at 50% (IC50) IC 50 = 2.4 μ M ], as for its substantial ER α agonist at > 5 μ M and TR antagonist activity at 10 μ M . Climbazole showed AR antagonist (IC 50 = 13.6 μ M ), ER α agonist at > 10 μ M , and TR antagonist activity at 10 μ M . DISCUSSION These data support the concerns of regulatory authorities about the endocrine-disrupting potential of preservatives. These data also define the need to further determine their effects on the endocrine system and the need to reassess the risks they pose to human health and the environment. https://doi.org/10.1289/EHP6596.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | | | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|
3
|
Medlock Kakaley E, Cardon MC, Gray LE, Hartig PC, Wilson VS. Generalized Concentration Addition Model Predicts Glucocorticoid Activity Bioassay Responses to Environmentally Detected Receptor-Ligand Mixtures. Toxicol Sci 2020; 168:252-263. [PMID: 30535411 DOI: 10.1093/toxsci/kfy290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many glucocorticoid receptor (GR) agonists have been detected in waste and surface waters domestically and around the world, but the way a mixture of these environmental compounds may elicit a total glucocorticoid activity response in water samples remains unknown. Therefore, we characterized 19 GR ligands using a CV1 cell line transcriptional activation assay applicable to water quality monitoring. Cells were treated with individual GR ligands, a fixed ratio mixture of full or partial agonists, or a nonequipotent mixture with full and partial agonists. Efficacy varied (48.09%-102.5%) and potency ranged over several orders of magnitude (1.278 × 10-10 to 3.93 × 10-8 M). Concentration addition (CA) and response addition (RA) mixtures models accurately predicted equipotent mixture responses of full agonists (r2 = 0.992 and 0.987, respectively). However, CA and RA models assume mixture compounds produce full agonist-like responses, and therefore they overestimated observed maximal efficacies for mixtures containing partial agonists. The generalized concentration addition (GCA) model mathematically permits < 100% maximal responses, and fell within the 95% confidence interval bands of mixture responses containing partial agonists. The GCA, but not CA and RA, model predictions of nonequipotent mixtures containing both full and partial agonists fell within the same statistical distribution as the observed values, reinforcing the practicality of the GCA model as the best overall model for predicting GR activation. Elucidating the mechanistic basis of GR activation by mixtures of previously detected environmental GR ligands will benefit the interpretation of environmental sample contents in future water quality monitoring studies.
Collapse
Affiliation(s)
- Elizabeth Medlock Kakaley
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, Chapel Hill, North Carolina 27599
| | - Mary C Cardon
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - L Earl Gray
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - Phillip C Hartig
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - Vickie S Wilson
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| |
Collapse
|
4
|
Rozenblut-Kościsty B, Ogielska M, Hahn J, Kleemann D, Kossakowski R, Tamschick S, Schöning V, Krüger A, Lutz I, Lymberakis P, Kloas W, Stöck M. Impacts of the synthetic androgen Trenbolone on gonad differentiation and development - comparisons between three deeply diverged anuran families. Sci Rep 2019; 9:9623. [PMID: 31270347 PMCID: PMC6610071 DOI: 10.1038/s41598-019-45985-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
Using a recently developed approach for testing endocrine disruptive chemicals (EDCs) in amphibians, comprising synchronized tadpole exposure plus genetic and histological sexing of metamorphs in a flow-through-system, we tested the effects of 17β-Trenbolone (Tb), a widely used growth promoter in cattle farming, in three deeply diverged anuran families: the amphibian model species Xenopus laevis (Pipidae) and the non-models Bufo(tes) viridis (Bufonidae) and Hyla arborea (Hylidae). Trenbolone was applied in three environmentally and/or physiologically relevant concentrations (0.027 µg/L (10-10 M), 0.27 µg/L (10-9 M), 2.7 µg/L (10-8 M)). In none of the species, Tb caused sex reversals or masculinization of gonads but had negative species-specific impacts on gonad morphology and differentiation after the completion of metamorphosis, independently of genetic sex. In H. arborea and B. viridis, mounting Tb-concentration correlated positively with anatomical abnormalities at 27 µg/L (10-9 M) and 2.7 µg/L (10-8 M), occurring in X. laevis only at the highest Tb concentration. Despite anatomical aberrations, histologically all gonadal tissues differentiated seemingly normally when examined at the histological level but at various rates. Tb-concentration caused various species-specific mortalities (low in Xenopus, uncertain in Bufo). Our data suggest that deep phylogenetic divergence modifies EDC-vulnerability, as previously demonstrated for Bisphenol A (BPA) and Ethinylestradiol (EE2).
Collapse
Affiliation(s)
- Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Juliane Hahn
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Denise Kleemann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ronja Kossakowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Viola Schöning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Angela Krüger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409, Heraklion, Crete, Greece
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
- Department of Endocrinology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Unter den Linden 6, 10099, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany.
| |
Collapse
|
5
|
Blackwell BR, Ankley GT, Bradley PM, Houck KA, Makarov SS, Medvedev AV, Swintek J, Villeneuve DL. Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:973-983. [PMID: 30548063 PMCID: PMC6467772 DOI: 10.1021/acs.est.8b05304] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.
Collapse
Affiliation(s)
- Brett R. Blackwell
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
- Corresponding author: 6201 Congdon Blvd, Duluth, MN 55804; ; T: (218) 529-5078; Fax: (218) 529-5003
| | - Gerald T. Ankley
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
| | - Paul M. Bradley
- US Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd, Columbia, SC, USA 29210
| | - Keith A. Houck
- US EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr, Research Triangle Park, NC, USA 27711
| | | | | | - Joe Swintek
- Badger Technical Services, 6201 Congdon Blvd, Duluth, MN, USA 55804
| | - Daniel L. Villeneuve
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, USA 55804
| |
Collapse
|
6
|
Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. J Toxicol 2017; 2017:9679738. [PMID: 29333157 PMCID: PMC5733165 DOI: 10.1155/2017/9679738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Triclocarban (TCC) is an antimicrobial agent used in personal care products. Although frequently studied with another antimicrobial, triclosan, it is not as well researched, and there are very few reviews of the biological activity of TCC. TCC has been shown to be a possible endocrine disruptor, acting by enhancing the activity of endogenous hormones. TCC has been banned in the US for certain applications; however, many human populations, in and outside the US, exhibit exposure to TCC. Because of the concern of the health effects of TCC, we conducted a scoping review in order to map the current body of literature on the endocrine, reproductive, and developmental effects of TCC. The aim of this scoping review was to identify possible endpoints for future systematic review and to make recommendations for future research. A search of the literature until August 2017 yielded 32 relevant studies in humans, rodents, fish, invertebrates, and in vitro. Based on the robustness of the literature in all three evidence streams (human, animal, and in vitro), we identified three endpoints for possible systematic review: estrogenic activity, androgenic activity, and offspring growth. In this review, we describe the body of evidence and make recommendations for future research.
Collapse
|
7
|
Rege J, Nakamura Y, Satoh F, Morimoto R, Kennedy MR, Layman LC, Honma S, Sasano H, Rainey WE. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J Clin Endocrinol Metab 2013; 98:1182-8. [PMID: 23386646 PMCID: PMC3590473 DOI: 10.1210/jc.2012-2912] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT A broad analysis of adrenal gland-derived 19-carbon (C19) steroids has not been reported. This is the first study that uses liquid chromatography-tandem mass spectrometry to quantify 9 C19 steroids (androgens and their precursors), estrone, and estradiol in the adrenal vein (AV) of women, before and after ACTH stimulation. OBJECTIVE The objective of this study was to define the adrenal androgen metabolome in women before and after ACTH infusion. DESIGN This was a retrospective study. PATIENTS Seven women, aged 50.4 ± 5.4 years, with suspected diagnosis of an adrenal aldosterone-producing adenoma were included in the study. METHODS AV and iliac serum samples were collected before and after administration of ACTH (15 minutes). AV samples were analyzed using for concentrations of 9 unconjugated C19 steroids, estrone, and estradiol. Dehydroepiandrosterone sulfate (DHEA-S) was quantified by radioimmunoassay. RESULTS AV levels of DHEA-S were the highest among the steroids measured. The most abundant unconjugated C19 steroids in AV were 11β-hydroxyandrostenedione (11OHA), dehydroepiandrosterone (DHEA), and androstenedione (A4). ACTH significantly increased the adrenal output of 9 of the 12 steroids that were measured. ACTH increased the mean AV concentration of DHEA-S by 5-fold, DHEA by 21-fold, A4 by 7-fold, and 11OHA by 5-fold. 11β-Hydroxytestosterone and testosterone were found to be potent androgen receptor agonists when tested with an androgen-responsive cell reporter model. CONCLUSION The current study indicates that the adrenal gland secretes primarily 3 weak androgens, namely DHEA, 11OHA, and A4. Active androgens, including testosterone and 11β-hydroxytestosterone, are also produced but to a lesser degree.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Martyniuk CJ, Denslow ND. Exploring androgen-regulated pathways in teleost fish using transcriptomics and proteomics. Integr Comp Biol 2012; 52:695-704. [PMID: 22596056 DOI: 10.1093/icb/ics072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the environment, there are aquatic pollutants that disrupt androgen signaling in fish. Laboratory and field-based experiments have utilized omics technologies to characterize the molecular mechanisms underlying androgen-receptor agonism/antagonism. Transcriptomics and proteomics studies with 17β-trenbolone, a growth-promoting pharmaceutical found in water systems surrounding cattle feed lots, and androgens such as 17α-methyltestosterone and 17α-methyldihydrotestosterone, have been conducted in ovary and liver of fish that include the fathead minnow (FHM) (Pimephales promelas), common carp (Cyprinus carpio), Qurt medaka (Oryzias latipes), and zebrafish (Danio rerio). In this mini-review, we survey recent omics studies in fish and reveal that, despite the diversity of species and tissues examined, there are common cellular responses that are observed with waterborne androgenic treatments. Recurring themes in gene ontology include apoptosis, transport and oxidation of lipids, synthesis and transport of hormones, immune response, protein metabolism, and cell proliferation. However, we also discuss other mechanisms other than androgen receptor (AR) activation, such as responses to toxicant stress, estrogen receptor agonism, aromatization of androgens into estrogens, and inhibitory feedback mechanisms by high levels of androgens that may also explain molecular responses in fish. To further explore androgen-responsive protein networks, a sub-network enrichment analysis was performed on protein data collected from the livers of female FHMs exposed to 17β-trenbolone. We construct a putative AR-regulated protein/cell process network in the liver that includes B-lymphocyte differentiation, xenobiotic clearance, low-density lipoprotein oxidation, proliferation of smooth muscle cells, and permeability of blood vessels. We demonstrate that construction of protein networks can offer insight into cell processes that are potentially regulated by androgens.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| | | |
Collapse
|