1
|
Mak M, Beattie KD, Basta A, Randall D, Chen ZH, Spooner-Hart R. Triangulation of methods using insect cell lines to investigate insecticidal mode-of-action. PEST MANAGEMENT SCIENCE 2021; 77:492-501. [PMID: 32815275 DOI: 10.1002/ps.6046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study investigated three in vitro models to assist in elucidating possible mode-of-action, which could be adopted to evaluate insecticidal activity of complex, unknown, or multi-constituent formulations. We used a combination of absorbance spectrometry, confocal scanning laser microscopy and microelectrode ion flux estimation (MIFE) to provide insight into potential target sites for insecticides. This study used two insect cell lines and evaluated three pyrethroid insecticides. RESULTS We observed that the two cell lines produced distinctly different responses. Drosophila melanogaster D.mel-S2 cell line was a useful model to monitor ion flux changes, resulting from insecticides with neural toxicity; however, it was less useful to determine some metabolic pathway indicators of toxic stress. Conversely, the Spodoptera frugiperda Sf9 cell line produced acute reactive oxygen species (ROS) in response to insecticide treatments, but was not highly responsive in electrophysiological experiments. We also showed that the natural, multi-constituent botanical extract of pyrethrum elicited different Na+ , Cl- and Ca2+ ion fluxes than its synthetic, single constituent analogues, α-cypermethrin and esfenvalerate. These two methods used in combination with absorbance spectrometry measuring cell growth inhibition plus cell mortality assays shed some light on cytotoxic responses in differing model cell lines. CONCLUSION This research highlights the importance of using multiple cell types and interdisciplinary methods to provide a better insight into mode of insecticidal action. This is especially pertinent to novel biopesticide discovery, as the underlying mechanisms for toxicity in initial screening processes are likely to be unknown.
Collapse
Affiliation(s)
- Michelle Mak
- School of Science, Western Sydney University, Penrith, Australia
| | - Karren D Beattie
- School of Science, Western Sydney University, Penrith, Australia
| | - Albert Basta
- School of Science, Western Sydney University, Penrith, Australia
| | - David Randall
- School of Science, Western Sydney University, Penrith, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Robert Spooner-Hart
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
2
|
Xiong H, Liu X, Xu J, Zhang X, Cao S, Huang Q. Safety assessment of a new benzoylphenylurea TXH09 and its efficacy against two borers Ostrinia furnacalis and Grapholitha molesta in field. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110591. [PMID: 32283411 DOI: 10.1016/j.ecoenv.2020.110591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Benzoylphenylureas as an important type of insect growth regulators, acting on the moulting stage in immature insects, are highly effective and low toxic. The new benzoylphenylurea TXH09 [N-((2,6-dimethyl-4-(heptafluoropropyl-2-yl)phenyl)carbamoyl)-2,6-difluorobenzamide] has high efficacy against chewing insect pests harming vegetables and rice. In this paper, the efficacy of TXH09 against two intractable borers Ostrinia furnacalis and Grapholitha molesta were evaluated in field, and safety assessment by exploring the characteristics of photodegradation, cytotoxicity, micronucleus generation and chromosome aberration was performed. The results showed that TXH09 had good capability in preventing infested corn and reducing the population of O. furnacalis larvae, and maintained high efficacy on shoot protection and peach conservation against G. molesta larvae. There were no significant differences between the control effects of TXH09 and that of hexaflumuron or diflubenzuron at the same active dose. TXH09 photolysis in solvents N,N-dimethylformamide, toluene and methanol yielded two major products, and the photodegradation of TXH09 was more prone to occur in N,N-dimethylformamide. TXH09 and the mixture of its photoproducts showed higher cytotoxicity on insect Sf-9 cells than on human Hek293 cells. Moreover, TXH09 didn't show significant effects in inducing micronucleated cells in both male and female mice and chromosomal aberrations in mouse spermatocytes by its own. In conclusion, TXH09, as an effective insecticide, has good environmental safety performance against O. furnacalis and G. molesta in field.
Collapse
Affiliation(s)
- Hui Xiong
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuefeng Liu
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiuyong Xu
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianfei Zhang
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Song Cao
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Qingchun Huang
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Timoumi R, Amara I, Ben Salem I, Abid-Essefi S. Triflumuron induces cytotoxic effects on hepatic and renal human cell lines. J Biochem Mol Toxicol 2020; 34:e22504. [PMID: 32227688 DOI: 10.1002/jbt.22504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
Insect growth regulator insecticides are a new class of pesticides, commonly used around the world to control insect damages. Among those compounds, we focused our interest on triflumuron (TFM), which is less toxic than other conventional insecticides. However, not much is known about its toxic effects on mammalian systems. Therefore, our study aimed toward evaluating the cytotoxic and genotoxic effects of TFM using two different cell lines, the human renal embryonic cells (HEK 293) and hepatocytes (Hep G2). We showed, according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, that TFM reduced significantly the cell viability and increased the reactive oxygen species generation, malondialdehyde levels, and mitochondrial membrane potential in both cell lines. The antioxidant system was disturbed as assessed by the increased activities in both catalase and superoxide dismutase. We demonstrated also, that TFM is an inductor of DNA damages quantified by the comet assay. Moreover, we showed an overexpression of proapoptotic Bax and a decrease in antiapoptotic Bcl-2 expression. As a conclusion, we demonstrate that the liver presents the major target organ to TFM, in which the cytotoxicity and the genotoxic effects were significantly higher in hepatic cells than in renal cells and by consequence its uses must be controlled.
Collapse
Affiliation(s)
- Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Ines Amara
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.,Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
4
|
Muhayimana S, Zhang X, Xu J, Xiong H, Luan S, Zhu Q, Huang Q. Cytotoxic selectivity and apoptosis induction of piericidin A contributes potentially to its insecticidal effect against Mythimna separata (Lepidoptera: Noctuidae) larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:19-25. [PMID: 31153468 DOI: 10.1016/j.pestbp.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Piericidin A (PIA), an active inhibitor of Complex I, is widely used in studies of the anti-bacterial and anti-disease competence, but its physiological and mechanistic effects have rarely been clearly defined in insect individual or insect cells. The present study reveals the considerable insecticidal activity of PIA on Mythimna separata larvae by using a comparison with Aphis craccivora adult, and the cytotoxic selectivity induced by PIA on lepidopteran Tn5B1-4 cells. We demonstrate that the viability of Tn5B1-4 cells is inhibited by PIA in a time- and concentration-dependent manner with IC50 value of 0.061 μM, whilst PIA shows slight inhibitory effect on the viability of HepG2 and Hek293 cells with IC50 value of 233.97 and 228.96 μM, respectively. The inhibitory effect of PIA on the proliferation of Tn5B1-4 cells is significant and persistent, causing a series of morphological changes including cell shrinkage, condensed and fragmented nuclei. Intracellular biochemical assays show that PIA induces apoptosis of Tn5B1-4 cells coincides with a decrease in the mitochondrial membrane potential. PIA in Tn5B1-4 cells can be chelated by EDTA, thereby losing cytotoxicity, whereas exogenous Ca2+ restores the cytotoxicity of PIA by chelating with EDTA in a competitive manner. Our findings highlight the importance of the long-lasting cytotoxicity and the cytoxic selectivity on Tn5B1-4 cells caused by PIA, which ensure the identification of insecticidal effect of PIA against insect pests.
Collapse
Affiliation(s)
- Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shaorong Luan
- Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiqi Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Yun X, Huang Q, Rao W, Xiao C, Zhang T, Mao Z, Wan Z. A comparative assessment of cytotoxicity of commonly used agricultural insecticides to human and insect cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:179-185. [PMID: 27940132 DOI: 10.1016/j.ecoenv.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The cytotoxic potential of 13 commonly used agricultural insecticides was examined using cell-based systems with three human HepG2, Hek293, HeLa cells and three insect Tn5B1-4, Sf-21, and Drosophila S2 cells. Data showed that (1) an enhancement of some insecticides (e.g. pyrethroids) on cells proliferation; (2) an inhibition of some insecticides on cells viability; (3) various levels of susceptibility of different cells to the same insecticide; and (4) the cell type dependent sensitivity to different insecticides. The degree of cytotoxicity of insecticides on human cells was significantly lower than that on insect cells (P<0.05). Methomyl, even 20μg/ml, showed little cytotoxicity at 24h exposure whereas emamectin benzoate possessed the strongest cytotoxic potential in a dose-dependent fashion. The results revealed comparable cytotoxic property of agricultural insecticides against intact cells.
Collapse
Affiliation(s)
- Xinming Yun
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Wenbing Rao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ciying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tao Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhifan Mao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ziyi Wan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|