1
|
Jia N, Wang Y, Guan Y, Chen Y, Li R, Yu G. Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116070. [PMID: 33223338 DOI: 10.1016/j.envpol.2020.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10-15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
Collapse
Affiliation(s)
- Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuying Guan
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325039, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Uptake and Effects of Cylindrospermopsin: Biochemical, Physiological and Biometric Responses in The Submerged Macrophyte Egeria densa Planch. WATER 2020. [DOI: 10.3390/w12112997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cylindrospermopsin (CYN) is being detected in surface waters more commonly and frequently worldwide. This stable, extracellular cyanotoxin causes protein synthesis inhibition, thus posing a risk to aquatic biota, including macrophytes, which serve as primary producers. Nevertheless, data regarding the effects caused by environmental concentrations of CYN is still limited. In the presented study, the uptake of CYN at environmental concentrations by the submerged macrophyte Egeria densa was investigated. Bioaccumulation, changes in the plant biomass, as well as shoot-length were assessed as responses. Variations in the cellular H2O2 levels, antioxidative enzyme activities, as well as concentrations and ratios of the photosynthetic pigments were also measured. E. densa removed 54% of CYN within 24 h and up to 68% after 336 h; however, CYN was not bioaccumulated. The antioxidative enzyme system was activated by CYN exposure. Pigment concentrations decreased with exposure but normalized after 168 h. The chlorophyll a to b ratio increased but normalized quickly thereafter. Carotenoids and the ratio of carotenoids to total chlorophylls increased after 96 h suggesting participation in the antioxidative system. Growth stimulation was observed. The ability to remove CYN and resistance to CYN toxicity within 14 days proved E. densa as suitable for phytoremediation; nonetheless, prolonged exposure (32 days) resulted in adverse effects related to CYN uptake, which needs to be studied further.
Collapse
|
3
|
Chinnappan R, AlZabn R, Fataftah AK, Alhoshani A, Zourob M. Probing high-affinity aptamer binding region and development of aptasensor platform for the detection of cylindrospermopsin. Anal Bioanal Chem 2020; 412:4691-4701. [PMID: 32500257 DOI: 10.1007/s00216-020-02723-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
Cylindrospermopsin (CYN) is one of the most concerning cyanotoxins due to its potential toxicity and spreading to various environments including drinking water. CYN has potential interferences with human and animal metabolic pathways, which influence the functions of organs including liver, kidneys, lungs, etc. CYN is involved in the inhibition of protein synthesis and detachment of ribosomes from the endoplasmic reticulum membrane. It also interacts with soluble proteins, which are associated with protein translations. It is believed that cytochrome 450 is responsible for the rapid toxicity of CYN. Researchers are urged to develop a high-throughput screening method for the detection of CYN in water. Construction of low cost, rapid, and sensitive analytical methods for the detection of CYN is challenging. Here, we used graphene oxide (GO) as the fluorescence sensing platform for probing the high affinity of the short aptamer derived from the wild-type long aptamer-CYN sensing. The biosensor construction involved two steps: first, quenching the fluorescence of fluorescent-labelled truncated aptamer using GO as a quencher and, second, fluorescence recovery in the presence of CYN by competitive binding between the target and GO. One of the truncate aptamers has a 12-fold higher affinity and enhances sensitivity compared to the long aptamer sequence. The limit of detection of the high affinity truncated aptamer is 17 pM which is 6-fold lower than the long aptamer (100 pM). The sensor specifically detects CYN in the presence of other potential interfering toxins. The performance of the sensor was validated using CYN spiked tap water with very good recovery percentage. A rapid and highly sensitive detection of CYN from water resources has been achieved using this method.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Razan AlZabn
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Amjad K Fataftah
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. .,King Faisal Specialist Hospital and Research Center, Al Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
4
|
Flores-Rojas NC, Esterhuizen-Londt M, Pflugmacher S. Uptake, Growth, and Pigment Changes in Lemna minor L. Exposed to Environmental Concentrations of Cylindrospermopsin. Toxins (Basel) 2019; 11:toxins11110650. [PMID: 31703455 PMCID: PMC6891409 DOI: 10.3390/toxins11110650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 01/17/2023] Open
Abstract
Cylindrospermopsin (CYN)-producing cyanobacterial blooms such as Raphidiopsis, Aphanizomenon, Anabaena, Umezakia, and Lyngbya spp. are occurring more commonly and frequently worldwide. CYN is an environmentally stable extracellular toxin, which inhibits protein synthesis, and, therefore, can potentially affect a wide variety of aquatic biota. Submerged and floating macrophytes, as primary producers in oligotrophic habitats, are at risk of exposure and information on the effects of CYN exposure at environmentally relevant concentrations is limited. In the present study, we investigated CYN uptake in the floating macrophyte Lemna minor with exposure to reported environmental concentrations. The effects were evaluated in terms of bioaccumulation, relative plant growth, and number of fronds per day. Variations in the concentrations and ratios of the chlorophylls as stress markers and carotenoids as markers of oxidative stress defense were measured. With exposure to 25 μg/L, L. minor could remove 43% of CYN within 24 h but CYN was not bioaccumulated. Generally, the pigment concentrations were elevated with exposure to 0.025, 0.25, and 2.5 μg/L CYN after 24 h, but normalized quickly thereafter. Changes in relative plant growth were observed with exposure to 0.25 and 2.5 μg/L CYN. Adverse effects were seen with these environmentally realistic concentrations within 24 h; however, L. minor successfully recovered within the next 48-96 h.
Collapse
Affiliation(s)
| | - Maranda Esterhuizen-Londt
- Faculty of Biological and Environmental Sciences, Ecosystems and Environmental Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland;
- Korea Institute of Science and Technology Europe (KIST), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123 Saarbrücken, Germany
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Fabianinkatu 33, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-318-8337
| | - Stephan Pflugmacher
- Faculty of Biological and Environmental Sciences, Ecosystems and Environmental Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland;
- Korea Institute of Science and Technology Europe (KIST), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123 Saarbrücken, Germany
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Salas D, Borrull F, Fontanals N, Marcé RM. Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Responses of the antioxidative and biotransformation enzymes in the aquatic fungus Mucor hiemalis exposed to cyanotoxins. Biotechnol Lett 2017; 39:1201-1209. [PMID: 28484910 DOI: 10.1007/s10529-017-2348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. RESULTS Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l-1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l-1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. CONCLUSIONS M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.
Collapse
|
7
|
Esterhuizen-Londt M, Pflugmacher S. Inability to detect free cylindrospermopsin in spiked aquatic organism extracts plausibly suggests protein binding. Toxicon 2016; 122:89-93. [DOI: 10.1016/j.toxicon.2016.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022]
|
8
|
Esterhuizen-Londt M, von Schnehen M, Kühn S, Pflugmacher S. Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:151-157. [PMID: 27614285 DOI: 10.1016/j.aquatox.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
In the natural environment, Daphnia spp. are constantly exposed to a complex matrix of biomolecules, especially during cyanobacterial bloom events. When cyanobacterial cells decay, not only are toxic secondary metabolites known as cyanotoxins released, but also multiple other secondary metabolites, some of which act as enzyme inhibitors. The present study examined the effects of such a natural toxin matrix (crude extract from a bloom) versus artificial toxin mixtures in terms of oxidative stress in Daphnia pulex. The results indicate that there is no significant effect on the survival of D. pulex. However, exposure to the bloom extract resulted in increased lipid peroxidation over a shorter exposure period and reduced antioxidative enzyme activities when compared to the artificial mixtures. The daphnids also needed a longer recovery time to reduce the increased cellular hydrogen peroxide concentration associated with the exposure to the crude extract than with the artificial mixtures. The results indicate a significant difference between the bloom crude extract and the two synthetic mixtures for all stress markers tested, indicating enhanced toxicity of the bloom extract.
Collapse
Affiliation(s)
- Maranda Esterhuizen-Londt
- Technische Universität Berlin, Department of Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Marie von Schnehen
- Technische Universität Berlin, Department of Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Sandra Kühn
- Technische Universität Berlin, Department of Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Stephan Pflugmacher
- Technische Universität Berlin, Department of Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| |
Collapse
|