1
|
Chai T, Cui F, Song Y, Ye L, Li T, Qiu J, Liu X. Enantioselective Toxicity in Adult Zebrafish ( Danio rerio) Induced by Chiral PCB91 through Multiple Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5448-5458. [PMID: 29641891 DOI: 10.1021/acs.est.8b00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to further investigate the toxic mechanism of chiral polychlorinated biphenyl (PCB) 91 in adult zebrafish ( Danio rerio) exposed to racemic (rac-), (+)-, or (-)-PCB91 for 63 days. The enantioselective mortalities of adult zebrafish exposed to rac-/(+)-/(-)-PCB91 were 95.86, 50.08, and 81.50%, respectively. Tubular necrosis and cellular hypertrophy occurred in the kidneys of (-)-PCB91-treated groups, whereas demyelination and immune cell infiltration occurred in brains of the rac-, (+)-, and (-)-PCB91-treated groups. Additionally, exposure to chiral PCB91 enantioselectively induced neurotoxicity, apoptosis, and inflammation in brain tissues owing to perturbations of gene expression, protein content and sphingolipid levels. The high mortality after rac-/(+)-PCB91 exposure might be due to toxic effects on brain tissue, while the high mortality after (-)-PCB91 exposure might be due to toxic effects on kidney as well as brain tissues. Thus, our findings offer an important reference for elucidating the enantioselective toxicological mechanism of chiral PCBs in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Feng Cui
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Yue Song
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Linlin Ye
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Tiantian Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Xingquan Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| |
Collapse
|
2
|
Mink (Mustela vison) Gut Microbial Communities from Northeast China and Its Internal Relationship with Gender and Food Additives. Curr Microbiol 2017; 74:1169-1177. [DOI: 10.1007/s00284-017-1301-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 01/26/2023]
|
3
|
Folland WR, Newsted JL, Fitzgerald SD, Fuchsman PC, Bradley PW, Kern J, Kannan K, Remington RE, Zwiernik MJ. Growth and reproductive effects from dietary exposure to Aroclor 1268 in mink (Neovison vison), a surrogate model for marine mammals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:604-618. [PMID: 26313468 DOI: 10.1002/etc.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) from the commercial mixture Aroclor 1268 were historically released into the Turtle-Brunswick River estuary (southeastern Georgia, USA) from industrial operations. Sum PCBs (ΣPCBs) in blubber samples from Turtle-Brunswick River estuary bottlenose dolphins (Tursiops truncatus) have been reported at concentrations more than 10-fold higher than those observed in dolphins from adjacent regional estuaries. Given that toxicity data specific to Aroclor 1268 and applicable to marine mammals are limited, predicting the toxic effects of Aroclor 1268 in dolphins is uncertain, particularly because of its unique congener profile and associated physiochemical characteristics compared with other PCB mixtures. American mink (Neovison vison) were chosen as a surrogate model for cetaceans to develop marine mammalian PCB toxicity benchmarks. Mink are a suitable surrogate species for cetaceans in toxicity studies because of similarities in diet and taxonomic class, and a characteristic sensitivity to PCBs provides a potential safety factor when using mink toxicology data for cross-species extrapolations. Effects of dietary exposure to Aroclor 1268 on reproduction, growth, and mortality in mink were compared with both a negative control and a positive control (3,3',4,4',5-pentachlorobiphenyl, PCB 126). Aroclor 1268 dietary ΣPCB concentrations ranged from 1.8 µg/g feed wet weight to 29 µg/g feed wet weight. Whelp success was unaffected by Aroclor 1268 exposure at any level. Treatment mean litter size, kit growth, and kit survival were adversely affected relative to the negative control at dietary ΣPCB concentrations of 10.6 µg/g feed wet weight and greater.
Collapse
Affiliation(s)
- William R Folland
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - John L Newsted
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Scott D Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Diagnostic Center for Population and Environmental Health, Michigan State University, Lansing, Michigan, USA
| | | | - Patrick W Bradley
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - John Kern
- KERN Statistical Services, St. Cloud, Minnesota, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | | | - Matthew J Zwiernik
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|