1
|
Samarakoon T, Fujino T. Toxicity of triclosan, an antimicrobial agent, to a nontarget freshwater zooplankton species, Moina macrocopa. ENVIRONMENTAL TOXICOLOGY 2024; 39:314-328. [PMID: 37705231 DOI: 10.1002/tox.23950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
The toxicity of triclosan (TCS) on the freshwater cladoceran Moina macrocopa was investigated by acute and chronic toxicity assessments followed by genotoxicity and oxidative stress response analyses. The 48-h LC50 of TCS for ≤24-h-old M. macrocopa was determined as 539 μg L-1 . Chronic exposure to TCS at concentrations ranging from 5 to 100 μg L-1 showed a stimulatory effect at low concentrations (≤10 μg L-1 ) and an inhibitory effect at high concentrations (≥50 μg L-1 ) on growth, reproduction, and population-growth-related parameters of M. macrocopa. The genotoxicity test results indicated that TCS concentrations ranging from 50 to 100 μg L-1 can alter individuals' DNA. Analysis of the antioxidant enzymes catalase (CAT) and glutathione s-transferase (GST) demonstrated increased levels of these enzymes at high TCS concentrations. Our results indicated that TCS concentrations found in the natural environment have minimal acute toxicity to M. macrocopa. However, TCS at even low concentrations can significantly affect its growth, reproduction, and population-growth-related characteristics. The observed responses suggest a hormetic dose-response pattern and imply a potential endocrine-disrupting effect of TCS. Our molecular and biochemical findings indicated that high concentrations of TCS have the potential to induce oxidative stress that may lead to DNA alterations in M. macrocopa.
Collapse
Affiliation(s)
- Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
2
|
Pérez DJ, Lombardero LR, Doucette WJ. Influence of exposure time, physicochemical properties, and plant transpiration on the uptake dynamics and translocation of pharmaceutical and personal care products in the aquatic macrophyte Typha latifolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165107. [PMID: 37364828 DOI: 10.1016/j.scitotenv.2023.165107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Typha latifolia is widely used as a phytoremediation model plant for organic compounds. However, the dynamic uptake and translocation of pharmaceutical and personal care products (PPCPs) and their relationship with physicochemical properties, such as lipophilicity (LogKow), ionization behavior (pKa), pH-dependent lipophilicity (LogDow), exposure time and transpiration, are scarcely studied. In the current study, hydroponically grown T. latifolia was exposed to carbamazepine, fluoxetine, gemfibrozil, and triclosan at environmentally relevant concentrations (20 μg/L each). Eighteen out of thirty-six plants were exposed to the PPCPs and the other eighteen were untreated. Plants were harvested at 7, 14, 21, 28, 35, and 42 days and separated into root, rhizome, sprouts, stem, and lower, middle, and upper leaf sections. Dry tissue biomass was determined. PPCP tissue concentrations were analyzed by LC-MS/MS. PPCP mass per tissue type was calculated for each individual compound and for the sum of all compounds during each exposure time. Carbamazepine, fluoxetine, and triclosan were detected in all tissues, while gemfibrozil was detected only in roots and rhizomes. In roots, triclosan and gemfibrozil mass surpassed 80% of the PPCP mass, while in leaf carbamazepine and fluoxetine mass represented 90%. Fluoxetine accumulated mainly in the stem and the lower and middle leaf, while carbamazepine accumulated in the upper leaf. The PPCP mass in roots and rhizome was strongly positively correlated with LogDow, while in leaf it was correlated with water transpired and pKa. PPCP uptake and translocation in T. latifolia is a dynamic process determined by the properties of contaminants and plants.
Collapse
Affiliation(s)
- Débora Jesabel Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, (C1425FQB), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (INTA Balcarce - CONICET), Ruta Nacional 226 Km 73,5, 7620 Balcarce, Buenos Aires, Argentina; Utah Water Research Laboratory, Utah State University, Logan, Utah 834341, USA.
| | - Lucas Rodrigo Lombardero
- Instituto de Investigaciones Marinas y Costeras (IIMYC), CONICET, Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata 7600, Buenos Aires, Argentina
| | | |
Collapse
|
3
|
Pirutin SK, Jia S, Yusipovich AI, Shank MA, Parshina EY, Rubin AB. Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies. Int J Mol Sci 2023; 24:ijms24086947. [PMID: 37108111 PMCID: PMC10138916 DOI: 10.3390/ijms24086947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The review briefly describes various types of infrared (IR) and Raman spectroscopy methods. At the beginning of the review, the basic concepts of biological methods of environmental monitoring, namely bioanalytical and biomonitoring methods, are briefly considered. The main part of the review describes the basic principles and concepts of vibration spectroscopy and microspectrophotometry, in particular IR spectroscopy, mid- and near-IR spectroscopy, IR microspectroscopy, Raman spectroscopy, resonance Raman spectroscopy, Surface-enhanced Raman spectroscopy, and Raman microscopy. Examples of the use of various methods of vibration spectroscopy for the study of biological samples, especially in the context of environmental monitoring, are given. Based on the described results, the authors conclude that the near-IR spectroscopy-based methods are the most convenient for environmental studies, and the relevance of the use of IR and Raman spectroscopy in environmental monitoring will increase with time.
Collapse
Affiliation(s)
- Sergey K Pirutin
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Shunchao Jia
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Alexander I Yusipovich
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Mikhail A Shank
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Evgeniia Yu Parshina
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Andrey B Rubin
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
4
|
Donald CE, Nakken CL, Sørhus E, Perrichon P, Jørgensen KB, Bjelland HK, Stølen C, Kancherla S, Mayer P, Meier S. Alkyl-phenanthrenes in early life stage fish: differential toxicity in Atlantic haddock ( Melanogrammus aeglefinus) embryos. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:594-608. [PMID: 36727431 DOI: 10.1039/d2em00357k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tricyclic polycyclic aromatic hydrocarbons (PAHs) are believed to be the primary toxic components of crude oil. Such compounds including phenanthrene are known to have direct effects on cardiac tissue, which lead to malformations during organogenesis in early life stage fish. We tested a suite of 13 alkyl-phenanthrenes to compare uptake and developmental toxicity in early life stage haddock (Melanogrammus aeglefinus) embryos during gastrulation/organogenesis beginning at 2 days post fertilization via passive dosing. The alkyl-phenanthrenes were tested at their solubility limits, and three of them also at lower concentrations. Measured body burdens were linearly related to measured water concentrations. All compounds elicited one or more significant morphological defects or functional impairment, such as decreased length, smaller eye area, shorter jaw length, and increased incidence of body axis deformities and eye deformities. The profile of developmental toxicities appeared unrelated to the position of alkyl substitution, and gene expression of cytochrome 1 a (cyp1a) was low regardless of alkylation. Mortality and sublethal effects were observed below the expected range for baseline toxicity, thus indicating excess toxicity. Additionally, PAH concentrations that resulted in toxic effects here were far greater than when measured in whole crude oil exposures that cause toxicity. This work demonstrates that, while these phenanthrenes are toxic to early life stage fish, they cannot individually account for most of the developmental toxicity of crude oil, and that other compounds and/or mixture effects should be given more consideration.
Collapse
Affiliation(s)
| | - Charlotte L Nakken
- Institute of Marine Research, 5817 Bergen, Norway.
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, 5817 Bergen, Norway.
| | - Prescilla Perrichon
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Hege K Bjelland
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Christine Stølen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Sindhu Kancherla
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Philipp Mayer
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
5
|
Barrick A, Laroche O, Boundy M, Pearman JK, Wiles T, Butler J, Pochon X, Smith KF, Tremblay LA. First transcriptome of the copepod Gladioferens pectinatus subjected to chronic contaminant exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106069. [PMID: 34968986 DOI: 10.1016/j.aquatox.2021.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biological may miss. Analysis of the whole transcriptome can identify novel mechanisms of action leading to impacts in exposed biota. The aim of this study was to characterise how exposures to copper, benzophenone and diclofenac across multiple generations altered molecular expression pathways in the marine copepod Gladioferens pectinatus. Results of the study demonstrated differential gene expression was observed in cultures exposure to diclofenac (569), copper (449) and benzophenone (59). Pathways linked to stress, growth, cellular and metabolic processes were altered by exposure to all three contaminants with genes associated with oxidative stress and xenobiotic regulation also impacted. Protein kinase functioning, cytochrome P450, transcription, skeletal muscle contraction/relaxation, mitochondrial phosphate translocator, protein synthesis and mitochondrial methylation were all differentially expressed with all three chemicals. The results of the study also suggested that using dimethyl sulfoxide as a dispersant influenced the transcriptome and future research may want to investigate it's use in molecular studies. Data generated in this study provides a first look at transcriptomic response of G. pectinatus exposed to contaminants across multiple generations, future research is needed to validate the identified biomarkers and link these results to apical responses such as population growth to demonstrate the predictive capacity of molecular tools.
Collapse
Affiliation(s)
- Andrew Barrick
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand.
| | - Olivier Laroche
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Boundy
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - John K Pearman
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Tanja Wiles
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Juliette Butler
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Kong Y, Li X, Chen Y, Cui X. Coupling polydimethylsiloxane vials with a physiologically based extraction test to predict bioavailability of hydrophobic organic contaminants in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149557. [PMID: 34426349 DOI: 10.1016/j.scitotenv.2021.149557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
As alternatives to in vivo assays, physiologically based in vitro methods have been developed to measure bioaccessibility of hydrophobic organic contaminants (HOCs) in soils. However, bioaccessibility can usually be underestimated since in vitro tests fail to provide sufficient affinity for HOCs. Sorption sink was therefore included to simulate intestinal cell absorption and to promote the mobilization of HOCs from soils. In this study, polydimethylsiloxane (PDMS) vials, widely used as passive dosing, were introduced as a sorption sink to improve the performance of physiologically based extraction test (PBET). The bioaccessibility of PCBs (representatives of HOCs) in 13 lab-spiked soils measured by PBET coupled with PDMS vials ranged from 56.5 ± 2.7% to 109.3 ± 1.5%. Correlation was conducted between the bioaccessibility and relative bioavailability (RBA) of PCBs assessed using an in vivo mouse model. A significant correlation (p < 0.001, R2 = 0.72, slope = 0.85 ± 0.16) was observed between in vitro and in vivo data, indicating that the proposed method here can be a robust in vitro method to predict PCB RBA in soils. The accuracy of this novel method was further shown by extracting one field contaminated soil with environmental relevant levels of PCBs. The relative standard deviation of bioaccessibility measured by PBET with PDMS vials was 1.2-9.8%, and much lower than those by PBET alone with values of 17.1-63.6%. In addition, the PDMS vials can be reusable as sorption sink, and no significant variation (p = 0.44) in PCB bioaccessibility was observed among 5 cycles of extracting soils with PBET coupled with PDMS vials. Due to the high sorption capacity of PDMS and flexibility of PDMS mass used for vials, the novel method here is expected to be applicable in soils with a wide range of contamination levels.
Collapse
Affiliation(s)
- Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Quadra GR, Li Z, Silva PSA, Barros N, Roland F, Sobek A. Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:142-154. [PMID: 33999217 DOI: 10.1007/s00244-021-00853-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.
Collapse
Affiliation(s)
- Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Zhe Li
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| | | | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| |
Collapse
|
8
|
Trac LN, Sjo Holm KK, Birch H, Mayer P. Passive Dosing of Petroleum and Essential Oil UVCBs-Whole Mixture Toxicity Testing at Controlled Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6150-6159. [PMID: 33829772 DOI: 10.1021/acs.est.1c00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Petroleum products and essential oils are produced and used in large amounts and are categorized as "Substances of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs)." These UVCBs are notorious difficult-to-test substances, since they are complex mixtures of hydrophobic and volatile compounds. This study introduces two passive dosing (PD) approaches for whole UVCB toxicity testing: (1) headspace PD applies the UVCB and purified lipid oil as a donor to control exposure via the headspace and (2) silicone rod PD applies UVCB-loaded silicone rods to control exposure via an aqueous test medium and headspace. Headspace gas chromatography-mass spectrometry measurements were used to cross-validate the approaches at the saturation level and to confirm exposure and maintain mixture composition at varying donor concentration levels. Both approaches were applied to whole-mixture toxicity tests of petroleum and essential oil UVCBs with daphnia and algae. Finally, the observed toxicity was linked to concentrations in the donor and in lipid membranes at equilibrium with the donors. Dose-response curves were similar across the dosing approaches and tested species for petroleum products but differed by an order of magnitude between essential oils and PD systems. All observed toxic effects were consistent with baseline toxicity, and no excess mixture toxicity was observed.
Collapse
Affiliation(s)
- Lam Ngoc Trac
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Karina Knudsmark Sjo Holm
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| |
Collapse
|
9
|
Moeris S, Vanryckeghem F, Demeestere K, De Schamphelaere KAC. Neonicotinoid Insecticides from a Marine Perspective: Acute and Chronic Copepod Testing and Derivation of Environmental Quality Standards. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1353-1367. [PMID: 33465261 DOI: 10.1002/etc.4986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/30/2020] [Accepted: 01/12/2021] [Indexed: 05/07/2023]
Abstract
Neonicotinoid insecticides have become of global concern for the aquatic environment. Harpacticoid copepods are among the organisms most sensitive to neonicotinoids. We exposed the brackish copepod Nitocra spinipes to 4 neonicotinoid insecticides (clothianidin, imidacloprid, thiacloprid, and thiamethoxam) to investigate acute toxicity on adults (96-h exposure) and effects on larval development (7-d exposure). We used these results in combination with publicly available ecotoxicity data to derive environmental quality standards (EQS). These EQS were ultimately used in a single-substance and mixture risk assessment for the Belgian part of the North Sea. Acute toxicity testing revealed that immobilization is a more sensitive endpoint than mortality, with 96-h median effect concentration (EC50) values of 6.9, 7.2, 25, and 120 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. In addition, the larval development tests resulted in 7-d no-observed-effect concentrations (NOECs) of 2.5, 2.7, 4.2, and >99 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. The derived saltwater annual average (AA-)EQS were 0.05, 0.0048, 0.002, and 0.016 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. Finally, the risk characterization revealed some exceedances of the AA-EQS in Belgian harbors for imidacloprid (number of exceedances, n = 2/4), for thiacloprid (n = 1/4), for thiamethoxam (n = 1/4), and for the mixture of the 4 neonicotinoids (n = 4/4), but not at the open sea. At the open sea site, the toxic unit sums relative to the AA-EQS were 0.72 and 0.22, suggesting no mixture risk, albeit with a relatively small margin of safety. Including short-term EC10 (96-h) values of N. spinipes for the AA-EQS derivation led to a refinement of the AA-EQS for clothianidin and thiamethoxam, suggesting their use for the AA-EQS derivation because one of the overarching goals of the definition of EQS is to protect species at the population level. Environ Toxicol Chem 2021;40:1353-1367. © 2021 SETAC.
Collapse
Affiliation(s)
- Samuel Moeris
- Department of Animal Sciences and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Francis Vanryckeghem
- Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Karel A C De Schamphelaere
- Department of Animal Sciences and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Moeris S, Vanryckeghem F, Demeestere K, De Schamphelaere KAC. A margin of safety approach for the assessment of environmentally realistic chemical mixtures in the marine environment based on combined passive sampling and ecotoxicity testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142748. [PMID: 33160665 DOI: 10.1016/j.scitotenv.2020.142748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 05/26/2023]
Abstract
Organisms in the marine environment are being exposed to an increasing variety of chemicals. This research presents an effect-based monitoring method for the derivation of a margin of safety for environmentally realistic chemical mixtures. The method is based on a combination of passive sampling and ecotoxicity testing. First, passive sampling was performed using H2O-philic divinylbenzene Speedisks during 3 sampling campaigns between 2016 and 2018 at 4 sampling locations in the Belgian part of the North Sea. Next, we exposed the marine diatom Phaeodactylum tricornutum to Speedisk extracts that were reconstituted in HPLC-grade water and defined the MoS of each sample as the highest no-observed effect concentration, expressed as relative enrichment factor (REF). A REF was defined by comparing the concentrations of 89 personal care products, pesticides and pharmaceuticals in the biotest medium with those measured in water grab samples to relate exposure concentrations in the tests to environmental concentrations. Across eight marine samples, diatom growth inhibition was observed at REF ≥ 3.2 and margins of safety were found between REF 1.1-11.0. In addition, we found that reconstitution of extracts in HPLC-water was suitable to overcome the solvent-related challenges in biotesting that are usually associated with passive sampler extract spiking, whilst it still allowed REFs up to 44 in the biotest medium to be achieved. This method, however, likely covers mainly the polar fraction of environmentally realistic chemical mixtures and less the non-polar fraction. Nevertheless, for 5 out of 8 samples, the Margin of Safety (MoS) was found to be lower than 10, which represents the typically lowest possible assessment factor applied to no effects ecotoxicological data in conventional environmental risk assessments, suggesting ecological risks for these samples.
Collapse
Affiliation(s)
- Samuel Moeris
- Department of Animal Sciences and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium.
| | - Francis Vanryckeghem
- Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research Group Environmental Organic Chemistry and Technology (EnVOC), Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Karel A C De Schamphelaere
- Department of Animal Sciences and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| |
Collapse
|
11
|
Kwon HA, Jeong Y, Jeon HP, Kim S. Comparing passive dosing and solvent spiking methods to determine the acute toxic effect of pentachlorophenol on Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:286-294. [PMID: 32124145 DOI: 10.1007/s10646-020-02172-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Pentachlorophenol (PCP) is a widespread and persistent hydrophobic organic pollutant in the environment despite its restricted public use. Risk assessment of such hydrophobic organic compounds (HOCs) is challenging because sorption and volatilization issues during toxicity test often lead to inconsistent exposure concentration. Considering the hydrophobicity of the PCP, in this study, a passive dosing format was applied by adopting a silicone O-ring as a reservoir and evaluated its applicability on the determination of PCP on Daphnia magna. Results obtained with passive dosing method were compared with that of solvent spiking method. We hypothesized that the passive dosing method may provide more reliable and accurate toxicity results than conventional solvent spiking approach. As a result, the partition coefficient of PCP between methanol and a test medium (log KMeOH:ISO) was 2.1, which enabled the maintenance of reliable exposure concentration throughout the experiment. In the acute toxicity tests, passive dosing and solvent spiking showed similar EC50 values of 576 and 485 µg/L for 24 h, and 362 and 374 µg/L for 48 h, respectively, which overlap with EC50 values of previous studies. Altogether, both methods were suitable for the acute toxicity assessment of hydrophobic PCP.
Collapse
Affiliation(s)
- Hyun-Ah Kwon
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
- Division of Energy & Environment Technology, University of Science and Technology, Daejeon, 34113, Korea
| | - Yoonah Jeong
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52076, Aachen, Germany
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, Daehwa-Dong 283, Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Korea
| | - Hyun Pyo Jeon
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany
| | - Sanghun Kim
- Environmental Safety Group, KIST Europe, Korea Institute of Science and Technology, Campus E7.1, 66123, Saarbrücken, Germany.
- Division of Energy & Environment Technology, University of Science and Technology, Daejeon, 34113, Korea.
- Department of Pharmaceutical Science and Technology, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Korea.
| |
Collapse
|
12
|
Trac LN, Schmidt SN, Holmstrup M, Mayer P. Headspace Passive Dosing of Volatile Hydrophobic Organic Chemicals from a Lipid Donor-Linking Their Toxicity to Well-Defined Exposure for an Improved Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13468-13476. [PMID: 31612707 DOI: 10.1021/acs.est.9b04681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High hydrophobicity and volatility of chemicals often lead to substantial experimental challenges but were here utilized in headspace passive dosing (HS-PD) to establish and maintain exposure: the pure chemical served as a passive dosing donor for controlling exposure at saturation, whereas triglyceride oil containing the chemical was used to control lower exposure levels. These donor solutions were added to glass inserts placed in the closed test systems. Mass balance calculations confirmed a dominant donor capacity for all chemicals except isooctane. This HS-PD method was applied to algal growth inhibition and springtail lethality tests with terpenes, alkanes, and cyclic siloxanes. Headspace concentrations above the lipid donors were measured for three chemicals to determine their chemical activity, using saturated vapor as the analytical standard and thermodynamic reference. Toxicity was related to chemical activity and calculated concentrations in membranes at equilibrium with the lipid donor. For both tests and all chemicals, toxic effects were observed within or above the reported range for baseline toxicity, meaning that no excess toxicity was observed. The toxicity of siloxanes was markedly higher to the terrestrial springtail than the aquatic algae, which is consistent with a more efficient mass transfer of these volatile hydrophobic chemicals in air compared to water.
Collapse
Affiliation(s)
- Lam Ngoc Trac
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Kgs Lyngby , Denmark
| | - Stine Nørgaard Schmidt
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Kgs Lyngby , Denmark
| | - Martin Holmstrup
- Department of Bioscience , Aarhus University , DK-8600 Silkeborg , Denmark
| | - Philipp Mayer
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Kgs Lyngby , Denmark
| |
Collapse
|
13
|
Castro M, Sobek A, Yuan B, Breitholtz M. Bioaccumulation Potential of CPs in Aquatic Organisms: Uptake and Depuration in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9533-9541. [PMID: 31321968 DOI: 10.1021/acs.est.9b01751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chlorinated paraffins (CPs) are industrial chemicals, subdivided into three categories: short chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) chlorinated paraffins. SCCPs are currently restricted in Europe and North America. MC and LCCPs are being used as substitution products, but there is a knowledge gap concerning their bioaccumulation potential in aquatic organisms. In this work, we performed laboratory bioconcentration (passive uptake) and bioaccumulation (including dietary uptake) experiments with Daphnia magna using five different CP technical substances. All tested CP technical substances were bioaccumulative in D. magna, with log BCF and log BAF values ranging between 6.7-7.0 and 6.5-7.0 (L kg lipid-1), respectively. An increase in carbon chain length and an increase in chlorine content (% w/w) of the CP technical substances had significant positive effects on the log BCF and log BAF values. For the different CP technical substances, 50% depuration was achieved after 2 to 10 h when D. magna were transferred to clean media. Our results show that SC, MC, and LCCPs are (very)bioaccumulative in aquatic organisms. We believe these data can aid the ongoing policy discussion concerning the environmental risk posed by CPs.
Collapse
Affiliation(s)
- Mafalda Castro
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| |
Collapse
|
14
|
Tumová J, Šauer P, Golovko O, Koba Ucun O, Grabic R, Máchová J, Kocour Kroupová H. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2235-2246. [PMID: 30326456 DOI: 10.1016/j.scitotenv.2018.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Synthetic musk compounds are extensively used in personal care and cosmetic products around the world. Because they are not completely removed in sewage treatment plants, they eventually end up in aquatic environments. The aim of this review was to summarize published information on effects of polycyclic musks on aquatic organisms and to discuss whether the experimental design of toxicological studies involving these substances could influence the results obtained. With the exception of one study run in a flow-through system, all published toxicological studies on synthetic polycyclic musks have been conducted in semi-static or even static systems. Based upon data in the literature and our own results, we conclude that in toxicological tests with semi-static set-ups, concentrations of polycyclic musks decrease with time between bath exchanges, and, as a result, tested organisms are not being exposed to stable concentrations but rather to concentration pulses. The duration and character of these pulses are influenced mainly by aeration of experimental baths, as polycyclic musks have a tendency to volatilize from water baths. Under semi-static conditions, tested organisms may be subjected to lower concentration of the tested substance for relatively long periods. Those levels may even fall below the limits of quantification. During these periods, some level of detoxification and/or elimination (depuration) of the toxicant may reduce toxic effect of the previous exposures. Consequently, toxicity of polycyclic musk substances for aquatic organisms obtained under these conditions may be underestimated. Based upon existing data in the literature, therefore, it is very difficult to correctly estimate risk of polycyclic musks to aquatic organisms.
Collapse
Affiliation(s)
- Jitka Tumová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Olga Koba Ucun
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jana Máchová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| |
Collapse
|
15
|
Castro M, Breitholtz M, Yuan B, Athanassiadis I, Asplund L, Sobek A. Partitioning of Chlorinated Paraffins (CPs) to Daphnia magna Overlaps between Restricted and in-Use Categories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9713-9721. [PMID: 30074385 DOI: 10.1021/acs.est.8b00865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chlorinated paraffins (CPs) are high-production volume industrial chemicals consisting of n-alkanes (with 10 to 30 carbon atoms in the chain) with chlorine content from 30 to 70% of weight. In Europe, the use of short chain chlorinated paraffins (SCCPs) has been restricted by the Stockholm Convention on POPs due to their PBT (persistent, bioaccumulative and toxic) properties. Medium (MCCPs) and long chain (LCCPs) chlorinated paraffins are used as substitution products. In this work we studied the partitioning behavior of five different CP technical mixtures from the established categories (2 SCCPs, 1 MCCP, 1 LCCP and 1 CP technical mixture covering all categories) using passive dosing, by determining the partitioning coefficient of CP technical mixtures between silicone and water ( Ksilicone-water) as well as between organic matter and water ( Koc-water). We show that both silicone-water and organic carbon-water partition coefficients overlap between different categories of CP technical mixtures. These results indicate that in-use MCCPs and LCCPs may be equally or more bioaccumulative than restricted SCCPs. For the tested mixtures, both chlorine content and carbon chain length showed a significant correlation with both Ksilicone-water and Koc-water.
Collapse
Affiliation(s)
- Mafalda Castro
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 106-91 Stockholm , Sweden
| |
Collapse
|
16
|
Mustajärvi L, Eriksson-Wiklund AK, Gorokhova E, Jahnke A, Sobek A. Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1404-1413. [PMID: 29022620 DOI: 10.1039/c7em00228a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
Collapse
Affiliation(s)
- Lukas Mustajärvi
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden.
| | | | | | | | | |
Collapse
|