1
|
Wang X, Qi R, Li S, Ding M, Miao J, Han L, Fan Q, Li Y, Pan L. Species sensitivity distribution for nonylphenol: Acute toxicity and ecological risk in Bohai Region. MARINE POLLUTION BULLETIN 2024; 206:116765. [PMID: 39068711 DOI: 10.1016/j.marpolbul.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Nonylphenol (NP), a main byproduct of nonylphenol polyethoxylates (NPEs) degradation, is prevalent across diverse environmental settings. Given its widespread presence, evaluating the ecological risks associated with NP in coastal waters and sediments is essential for the protection of the marine environment. This study evaluates the acute toxicity of NP on ten representative aquatic species from the Bohai Sea, determining the Aquatic Life Criteria (ALC) through two distinct methods. The Criteria Maximum Concentration (CMC) for NP in seawater was established at 12.0 μg/L, with a Predicted No-Effect Concentration (PNEC) for water at 15.2 μg/L and for sediment at 33.3 μg/kg. Additionally, a tiered ecological risk assessment (ERA) of both surface seawater and sediment in the Bohai Sea revealed significant ecological risks at various sediment sites. These results offer crucial insights for assessing the ecological risks to coastal ecosystem and provide foundational data necessary for informed environmental protection and management strategies.
Collapse
Affiliation(s)
- Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shang Li
- Key Laboratory of Marine chemistry Theory and Technology (Ocean University of china), Ministry of Education, Qingdao 266100, China
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qichao Fan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yanbin Li
- Key Laboratory of Marine chemistry Theory and Technology (Ocean University of china), Ministry of Education, Qingdao 266100, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Wang L, Miao J, Ding M, Zhang W, Pan L. Exploring the mechanism of nonylphenol-induced ovarian developmental delay of manila clams, Ruditapes philippinarum: Applying RNAi to toxicological analysis. CHEMOSPHERE 2024; 356:141905. [PMID: 38579946 DOI: 10.1016/j.chemosphere.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 μg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.
Collapse
Affiliation(s)
- Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China; Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, PR China
| | - Wei Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
3
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Nam SH, Kim D, Lee TY, An YJ. Analyzing species sensitivity distribution of evidently edible microplastics for freshwater biota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133520. [PMID: 38232553 DOI: 10.1016/j.jhazmat.2024.133520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Assessing the ecological risks of microplastics is difficult because of the limited availability of reliable ecotoxicity data. Although freshwater is a valuable sink for microplastics, the current framework for ecological risk assessment using traditional toxicity data is not applicable to freshwater ecosystems. Herein, species sensitivity distribution (SSD) curves were compared for edible and all microplastics exposed to aquatic organisms based on traditional endpoint-based and all-endpoint-based databases. Freshwater toxicity data for microplastics were screened after verifying microplastic presence in test species (56 toxicity datapoints for one microalga, three water fleas, one fish, and one crab; 0.02-100 µm-sized microplastics). SSD and curve parameters were compared with or without non-traditional toxicity endpoints. The HC50 in all endpoint databases was more sensitive than that in the traditional endpoint database and showed a good fit. SSD curves derived from the database for all microplastics were compared and analyzed with edible microplastics. HCx increased for edible microplastics (0.02-100 µm-sized) than for all microplastics (0.02-200 µm-sized), and the size of edible microplastics was lower than of all microplastics. Thus, using non-traditional toxicity data, the SSD approach compensates for the limited ecotoxicity data on microplastics while considering the internalization of microplastics in biota.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Zhang J, Tao H, Shi J, Ge H, Li B, Wang Y, Zhang M, Li X. Deriving aquatic PNECs of endocrine disruption effects for PFOS and PFOA by combining species sensitivity weighted distributions and adverse outcome pathway networks. CHEMOSPHERE 2024; 346:140583. [PMID: 37918539 DOI: 10.1016/j.chemosphere.2023.140583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), as emerging endocrine-disrupting chemicals (EDCs), pose adverse effects on aquatic organisms. Conventional ecological risk assessment (ERA) not fully considering the mode of toxicity action of PFOS and PFOA, may result in an underestimation of risks and confuse decision-makers. In the study, we developed species sensitivity weighted distribution (SSWD) models based on adverse outcome pathway (AOP) networks for deriving predicted no-effect concentrations (PNECs). Three kinds of weighting criteria (intraspecies variation, trophic level abundance, and data quality) and weighted log-normal distribution methods were adopted. The developed models considered the inter/intraspecies variation and integrated nontraditional endpoints of endocrine-disrupting effects. The PNECs of endocrine disruption effects were derived as 2.52 μg/L (95% confidence intervals 0.667-9.85 μg/L) for PFOS and 18.7 μg/L (5.40-71.0 μg/L) for PFOA, which were more conservative than those derived from the SSD method and were comparable with the values in the literature based on the chronic toxicity data. For PFOS, the effect of growth and development was the most sensitive; however, for PFOA, the effect of reproduction was the most sensitive in the effects of growth and development, reproduction, biochemistry and genetics, and survival. The endocrine-disrupting effects of PFOS and PFOA are significant and need to be fully recognized in the ERA. This study provided an ERA framework that can improve the ecological relevance and reduce the uncertainty of PNECs of EDCs.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunhe Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Yu F, Jin F, Cong Y, Lou Y, Li Z, Li R, Ding B, Wang Y, Chen J, Wang J. Bisphenol A decreases the developmental toxicity and histopathological alterations caused by polystyrene nanoplastics in developing marine medaka Oryzias melastigma. CHEMOSPHERE 2023:139174. [PMID: 37301517 DOI: 10.1016/j.chemosphere.2023.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Nanoplastics (NPs) are emerging pollutants posing risks to marine biota and human health due to their small size and high bioavailability. However, there are still knowledge gaps regarding effects of co-existing pollutants on NPs toxicity to marine organisms at their respective environmentally relevant concentrations. Herein we investigated developmental toxicity and histopathological alterations caused by co-exposure of polystyrene nanoplastics (PS-NPs) and bisphenol A (BPA) to marine medaka, Oryzias melastigma. Embryos at 6 h post-fertilization were exposed to 50-nm PS-NPs (55 μg/L) or BPA (100 μg/L) or co-exposed to a combination of both. Results showed that PS-NPs exhibited decreased embryonic heart rate, larval body length, and embryonic survival as well as larval deformities such as hemorrhaging and craniofacial abnormality. When co-exposed, BPA mitigated all the adverse developmental effects caused by PS-NPs. PS-NPs also led to an increase in histopathological condition index of liver with early inflammatory responses, while co-exposure of BPA with PS-NPs did not. Our data suggest that the toxicity reduction of PS-NPs in the presence of BPA might result from the decreased bioaccumulation of PS-NPs caused by the interaction between BPA and PS-NPs. This study unveiled the impact of BPA on the toxicity of nanoplastics in marine fish during early developmental stages and highlight the need of more research on the long-term effects of complex mixtures in the marine environment by applying omics approaches to better understand the toxicity mechanism.
Collapse
Affiliation(s)
- Fuwei Yu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Baojun Ding
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
7
|
Nam SH, Kim SA, Lee TY, An YJ. Understanding hazardous concentrations of microplastics in fresh water using non-traditional toxicity data. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130532. [PMID: 36495642 DOI: 10.1016/j.jhazmat.2022.130532] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Microplastic pollution has become a major environmental problem, indicating the need to implement quantitative governance standards in combination with reducing or banning single-use plastic. Previous studies have predicted no-effect concentrations for limited microplastic-based toxicity data but have not considered environmentally relevant sizes, shapes, or polymers. To provide high quantity and quality data for microplastics of different sizes, shapes, or polymer compositions, non-traditional and traditional toxicity data may need to be considered in combination. In this study, we reviewed toxicity data for microplastics in freshwaters from 2018 to 2022 and analyzed the toxicity data using traditional and non-traditional methods. Based on 166 chronic traditional toxicity data points, the hazard concentration (HC) values calculated from non-traditional toxicity endpoints or all toxicity endpoints were lower than those calculated from traditional toxicity endpoints. Based on 398 chronic traditional plus non-traditional toxicity data points, the HC values calculated from traditional plus non-traditional values were higher than those calculated from traditional toxicity values. With these results, we developed a new framework for deriving microplastic-specific hazardous concentrations, one that especially considers non-traditional toxicity endpoints and values for microplastics. Overall, this study offers a basis for future management strategies and associated frameworks for mitigating microplastic toxicity.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Sang A Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
8
|
Zhang J, Shi J, Ge H, Tao H, Guo W, Yu X, Zhang M, Li B, Xiao R, Xu Z, Li X. Tiered ecological risk assessment of nonylphenol and tetrabromobisphenol A in the surface waters of China based on the augmented species sensitivity distribution models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113446. [PMID: 35366563 DOI: 10.1016/j.ecoenv.2022.113446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The ecological risks of nonylphenol (NP) and tetrabromobisphenol A (TBBPA) have received continued attention owing to their large consumption, frequently detection, adverse effects on the reproductive fitness, and lack of risk assessment technical systems. The geometric mean of the median concentrations of NP in the 22 surface waters was 0.278 μg/L, and TBBPA in the seven surface waters was 0.014 μg/L in China. The species sensitivity distribution (SSD) models were augmented by extrapolated reproductive toxicity data of native species to reduce uncertainty. The SSD models and the hazardous concentrations for 5% of species exhibited good robustness and reliability using the bootstrap method and minimum sample size determination. The acute and reproductive predicted no-effect concentrations (PNECs) were derived as 9.88 and 0.187 μg/L for NP, and 56.6 and 0.0878 μg/L for TBBPA, respectively. The risk quotients indicated that 11 of 22 locations for NP, and 3 of 7 locations for TBBPA were at high ecological risk levels based on the reproductive PNECs. Furthermore, the higher tier ecological risk assessment (ERA) based on potential affected fraction and joint probability curves indicated that the ecological risks in the four of above locations needed further concern. The ERA based on both the acute and reproductive toxicity is essential for assessing the ecological risks of NP and TBBPA, otherwise using acute PNECs only may result in an underestimation of ecological risk. The developed tiered ERA method and its framework can provide accurate, detailed, quantitative, locally applicable, and economically technical support for ERA of typical endocrine-disrupting chemicals in China.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wei Guo
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiangyi Yu
- Solid Waste and Chemical Management Center of Ministry of Ecology and Environment, Beijing 100029, China
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Jiang R, Liu J, Huang B, Wang X, Luan T, Yuan K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136689. [PMID: 31978772 DOI: 10.1016/j.scitotenv.2020.136689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Residual chemicals discharged from wastewater treatment plants (WWTPs) and subsequent ecological risk are important in production safety when reuse of the effluent water occurs. Thus, this work provides an investigation of the occurrence and removal of dissolved Endocrine-disrupting chemicals (EDCs) in 38 WWTPs in Guangdong Province, China. The results indicate that EDCs are widely distributed in the investigated WWTPs, while nonylphenols (NPs) are the predominant chemical among the target EDCs, accounting for >98% of the concentration in the influent and >97% of the concentration in the effluent. Moreover, 4 main types of wastewater treatment processes (oxidation ditch, A2/O, conventional activated sludge and microaeration oxidation ditch followed by A2/O) were found to be inefficient for removing dissolved EDCs, with a mean removal rate of approximately 25%. The potential environmental risk was predicted for residual EDCs. Specifically, 17α-ethynylestradiol (EE2) was considered to be the most hazardous chemical among the target EDCs, with a median risk quotient (RQ) of 8.94. In addition, β-estradiol (E2) and estrone (E1) have median RQs of 1.14 and 0.27, and NPs have median RQs of 0.61 (algae), 0.37 (inverberate) and 0.25 (fish), respectively.
Collapse
Affiliation(s)
- Ruirun Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Bi Huang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Nogueira DJ, Vaz VP, Neto OS, Silva MLND, Simioni C, Ouriques LC, Vicentini DS, Matias WG. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. ENVIRONMENTAL RESEARCH 2020; 182:108987. [PMID: 31812936 DOI: 10.1016/j.envres.2019.108987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/23/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) can be found in different crystalline phases, and with the emergence of nanotechnology there has been a rapid increase in the demand for Al2O3 NPs in different engineering areas and for consumer products. However, a careful evaluation of the potential environmental and human health risks is required to assess the implications of the release of Al2O3 NPs into the environment. Thus, the objective of this study was to investigate the toxicity of two crystalline phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), toward Daphnia magna and evaluate the risk to the aquatic ecology of Al2O3 NPs with different crystalline phases, based on a probabilistic approach. Different techniques were used for the characterization of the Al2O3 NPs. The toxicity toward Daphnia magna was assessed based on multiple toxicological endpoints, and the probabilistic species sensitivity distribution (PSSD) was used to estimate the risk of Al2O3 NPs to the aquatic ecology. The results obtained verify the toxic potential of the NPs toward D. magna even in sublethal concentrations, with a more pronounced effect being observed for η-Al2O3 NPs. The toxicity is associated with an increase in the reactive oxygen species (ROS) content and deregulation of antioxidant enzymatic/non-enzymatic enzymes (CAT, SOD and GSH). In addition, changes in MDA levels were observed, indicating that D. magna was under oxidative stress. The most prominent chronic toxic effects were observed in the organisms exposed to η-Al2O3 NPs, since the lowest LOEC was 3.12 mg/L for all parameters, while for α-Al2O3 NPs the lowest LOEC was 6.25 mg/L for longevity, growth and reproduction. However, the risk assessment results indicate that, based on a probabilistic approach, Al2O3 NPs (alpha, gamma, delta, eta and theta) only a very limited risk to organisms in surface waters.
Collapse
Affiliation(s)
- Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Vitor Pereira Vaz
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Oswaldo Savoldi Neto
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Carmen Simioni
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Luciane Cristina Ouriques
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Denice Shulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil.
| |
Collapse
|
11
|
Liu S, Cui R, Ma Y, Yu Q, Kannegulla A, Wu B, Fan H, Wang AX, Kong X. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117664. [PMID: 31670224 DOI: 10.1016/j.saa.2019.117664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Flexible plasmonic Surface-enhanced Raman scattering (SERS) substrates were fabricated using cellulose textile fibers, in which the textile fibers were recycled from waste paper in an eco-friendly way. The Glycidyltrimethylammonium chloride (GTAC) with positive charges was grafted onto the surface of the cellulose textile fibers through cationization. Plasmonic silver nanoparticles (Ag NPs) with negative charges were decorated onto the cellulose textile fibers via electrostatic interactions. After cationization, the variation range of the diameter of the cellulose textile fibers was significantly increased because part of the cellulose was dissolved under alkaline condition, leading to more 'hot spots' for SERS during the shrinking process. The cellulose textile fiber-Ag NPs nanocomposite was employed for monitoring bisphenol A (BPA) in water and soft drink by SERS and the sensitivity of BPA detection achieved 50 ppb. The recovery values of BPA in soda water samples were from 96% to 105%. These results illustrate that the cellulose textile fiber-Ag NPs nanocomposite can be used as flexible, high sensitivity SERS substrates for detecting harmful ingredients in food or environment.
Collapse
Affiliation(s)
- Sijia Liu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Rongkai Cui
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Yibo Ma
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076, Aalto, Finland
| | - Qian Yu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| | - Akash Kannegulla
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Hongtao Fan
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| |
Collapse
|