1
|
Ostovich E, Klaper R. Using a Novel Multiplexed Algal Cytological Imaging (MACI) Assay and Machine Learning as a Way to Characterize Complex Phenotypes in Plant-Type Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4894-4903. [PMID: 38446593 DOI: 10.1021/acs.est.3c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
High-throughput phenotypic profiling assays, popular for their ability to characterize alternations in single-cell morphological feature data, have been useful in recent years for predicting cellular targets and mechanisms of action (MoAs) for different chemicals and novel drugs. However, this approach has not been extensively used in environmental toxicology due to the lack of studies and established methods for performing this kind of assay in environmentally relevant species. Here, we developed a multiplexed algal cytological imaging (MACI) assay, based on the subcellular structures of the unicellular microalgae, Raphidocelis subcapitata, a toxicology and ecological model species. Several different herbicides and antibiotics with unique MoAs were exposed to R. subcapitata cells, and MACI was used to characterize cellular impacts by measuring subtle changes in their morphological features, including metrics of area, shape, quantity, fluorescence intensity, and granularity of individual subcellular components. This study demonstrates that MACI offers a quick and effective framework for characterizing complex phenotypic responses to environmental chemicals that can be used for determining their MoAs and identifying their cellular targets in plant-type organisms.
Collapse
Affiliation(s)
- Eric Ostovich
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Rebecca Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
2
|
Escher BI, Altenburger R, Blüher M, Colbourne JK, Ebinghaus R, Fantke P, Hein M, Köck W, Kümmerer K, Leipold S, Li X, Scheringer M, Scholz S, Schloter M, Schweizer PJ, Tal T, Tetko I, Traidl-Hoffmann C, Wick LY, Fenner K. Modernizing persistence-bioaccumulation-toxicity (PBT) assessment with high throughput animal-free methods. Arch Toxicol 2023; 97:1267-1283. [PMID: 36952002 PMCID: PMC10110678 DOI: 10.1007/s00204-023-03485-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany.
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, E72076, Tübingen, Germany.
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Munich-German Research Centre for Environmental Health (GmbH) at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Michaela Hein
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Wolfgang Köck
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
- International Sustainable Chemistry Collaboration Centre (ISC3), Friedrich-Ebert-Allee 32 + 36, D-53113, Bonn, Germany
| | - Sina Leipold
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
- Department for Political Science, Friedrich-Schiller-University Jena, Bachstr. 18k, 07743, Jena, Germany
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zurich, Switzerland
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Michael Schloter
- Comparative Microbiome Analysis, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Pia-Johanna Schweizer
- Research Institute for Sustainability-Helmholtz Centre Potsdam, Berliner Strasse 130, 14467, Potsdam, Germany
| | - Tamara Tal
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Igor Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, E04318, Leipzig, Germany
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Bertanza G, Steimberg N, Pedrazzani R, Boniotti J, Ceretti E, Mazzoleni G, Menghini M, Urani C, Zerbini I, Feretti D. Wastewater toxicity removal: Integrated chemical and effect-based monitoring of full-scale conventional activated sludge and membrane bioreactor plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158071. [PMID: 35988629 DOI: 10.1016/j.scitotenv.2022.158071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The literature is currently lacking effect-based monitoring studies targeted at evaluating the performance of full-scale membrane bioreactor plants. In this research, a monitoring campaign was performed at a full-scale wastewater treatment facility with two parallel lines (traditional activated sludge and membrane bioreactor). Beside the standard parameters (COD, nitrogen, phosphorus, and metals), 6 polynuclear aromatic hydrocarbons, 29 insecticides, 2 herbicides, and 3 endocrine disrupting compounds were measured. A multi-tiered battery of bioassays complemented the investigation, targeting different toxic modes of action and employing various biological systems (uni/multicellular, prokaryotes/eukaryotes, trophic level occupation). A traffic light scoring approach was proposed to quickly visualize the impact of treatment on overall toxicity that occurred after the exposure to raw and concentrated wastewater. Analysis of the effluents of the CAS and MBR lines show very good performance of the two systems for removal of organic micropollutants and metals. The most noticeable differences between CAS and MBR occurred in the concentration of suspended solids; chemical analyses did not show major differences. On the other hand, bioassays demonstrated better performance for the MBR. Both treatment lines complied with the Italian law's "ecotoxicity standard for effluent discharge in surface water". Yet, residual biological activity was still detected, demonstrating the adequacy and sensitivity of the toxicological tools, which, by their inherent nature, allow the overall effects of complex mixtures to be taken into account.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATAM-Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Nathalie Steimberg
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Roberta Pedrazzani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Jennifer Boniotti
- DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Elisabetta Ceretti
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Giovanna Mazzoleni
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Michele Menghini
- DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Chiara Urani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DISAT-Department of Earth and Environmental Sciences, University of Milan-Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy.
| | - Ilaria Zerbini
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Donatella Feretti
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| |
Collapse
|
4
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
5
|
Carafa R, Gallé T, Massarin S, Huck V, Bayerle M, Pittois D, Braun C. Combining Polar Organic Chemical Integrative Samplers (POCIS) with Toxicity Testing on Microalgae to Evaluate the Impact of Herbicide Mixtures in Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2667-2678. [PMID: 35959884 PMCID: PMC9826030 DOI: 10.1002/etc.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Pesticide risk assessment within the European Union Water Framework Directive is largely deficient in the assessment of the actual exposure and chemical mixture effects. Pesticide contamination, in particular herbicidal loading, has been shown to exert pressure on surface waters. Such pollution can have direct impact on autotrophic species, as well as indirect impacts on freshwater communities through primary production degradation. The present study proposes a screening method combining polar organic chemical integrative samplers (POCIS) with mode of action-specific toxicity testing on microalgae exposed to POCIS extracts as a standard approach to effectively address the problem of herbicide mixture effects detection. This methodology has been tested using Luxembourgish rivers as a case study and has proven to be a fast and reliable information source that is complementary to chemical analysis, allowing assessment of missing target analytes. Pesticide pressure in the 24 analyzed streams was mainly exerted by flufenacet, terbuthylazine, nicosulfuron, and foramsulfuron, with occasional impacts by the nonagricultural biocide diuron. Algae tests were more sensitive to endpoints affecting photosystem II and reproduction than to growth and could be best predicted with the concentration addition model. In addition, analysis revealed that herbicide mixture toxicity is correlated with macrophyte disappearance in the field, relating mainly to emissions from maize cultures. Combining passive sampler extracts with standard toxicity tests offers promising perspectives for ecological risk assessment. The full implementation of the proposed approach, however, requires adaptation of the legislation to scientific progress. Environ Toxicol Chem 2022;41:2667-2678. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Tom Gallé
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Sandrine Massarin
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Viola Huck
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Michael Bayerle
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Denis Pittois
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Christian Braun
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
6
|
Jang S, Ford LC, Rusyn I, Chiu WA. Cumulative Risk Meets Inter-Individual Variability: Probabilistic Concentration Addition of Complex Mixture Exposures in a Population-Based Human In Vitro Model. TOXICS 2022; 10:toxics10100549. [PMID: 36287830 PMCID: PMC9611413 DOI: 10.3390/toxics10100549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 05/16/2023]
Abstract
Although humans are continuously exposed to complex chemical mixtures in the environment, it has been extremely challenging to investigate the resulting cumulative risks and impacts. Recent studies proposed the use of “new approach methods,” in particular in vitro assays, for hazard and dose−response evaluation of mixtures. We previously found, using five human cell-based assays, that concentration addition (CA), the usual default approach to calculate cumulative risk, is mostly accurate to within an order of magnitude. Here, we extend these findings to further investigate how cell-based data can be used to quantify inter-individual variability in CA. Utilizing data from testing 42 Superfund priority chemicals separately and in 8 defined mixtures in a human cell-based population-wide in vitro model, we applied CA to predict effective concentrations for cytotoxicity for each individual, for “typical” (median) and “sensitive” (first percentile) members of the population, and for the median-to-sensitive individual ratio (defined as the toxicodynamic variability factor, TDVF). We quantified the accuracy of CA with the Loewe Additivity Index (LAI). We found that LAI varies more between different mixtures than between different individuals, and that predictions of the population median are generally more accurate than predictions for the “sensitive” individual or the TDVF. Moreover, LAI values were generally <1, indicating that the mixtures were more potent than predicted by CA. Together with our previous studies, we posit that new approach methods data from human cell-based in vitro assays, including multiple phenotypes in diverse cell types and studies in a population-wide model, can fill critical data gaps in cumulative risk assessment, but more sophisticated models of in vitro mixture additivity and bioavailability may be needed. In the meantime, because simple CA models may underestimate potency by an order of magnitude or more, either whole-mixture testing in vitro or, alternatively, more stringent benchmarks of cumulative risk indices (e.g., lower hazard index) may be needed to ensure public health protection.
Collapse
Affiliation(s)
- Suji Jang
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-(979)-845-4106
| |
Collapse
|
7
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
8
|
Huchthausen J, Henneberger L, Mälzer S, Nicol B, Sparham C, Escher BI. High-Throughput Assessment of the Abiotic Stability of Test Chemicals in In Vitro Bioassays. Chem Res Toxicol 2022; 35:867-879. [PMID: 35394761 DOI: 10.1021/acs.chemrestox.2c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abiotic stability of chemicals is not routinely tested prior to performing in vitro bioassays, although abiotic degradation can reduce the concentration of test chemicals leading to the formation of active or inactive transformation products, which may lead to misinterpretation of bioassay results. A high-throughput workflow was developed to measure the abiotic stability of 22 test chemicals in protein-rich aqueous media under typical bioassay conditions at 37 °C for 48 h. These test chemicals were degradable in the environment according to a literature review. The chemicals were extracted from the exposure media at different time points using a novel 96-pin solid-phase microextraction. The conditions were varied to differentiate between various reaction mechanisms. For most hydrolyzable chemicals, pH-dependent degradation in phosphate-buffered saline indicated that acid-catalyzed hydrolysis was less important than reactions with hydroxide ions. Reactions with proteins were mainly responsible for the depletion of the test chemicals in the media, which was simulated by bovine serum albumin (BSA) and glutathione (GSH). 1,2-Benzisothiazol-3(2H)-one, 2-methyl-4-isothiazolinone, and l-sulforaphane reacted almost instantaneously with GSH but not with BSA, indicating that GSH is a good proxy for reactivity with electrophilic amino acids but may overestimate the actual reaction with three-dimensional proteins. Chemicals such as hydroquinones or polyunsaturated chemicals are prone to autoxidation, but this reaction is difficult to differentiate from hydrolysis and could not be simulated by the oxidant N-bromosuccinimide. Photodegradation played a minor role because cells are exposed in incubators in the dark and simulations with high light intensities did not yield realistic degradation. Stability predictions from various in silico prediction models for environmental conditions can give initial indications of the stability but were not always consistent with the experimental stability in bioassays. As the presented workflow can be performed in high throughput under realistic bioassay conditions, it can be used to provide an experimental database for developing bioassay-specific stability prediction models.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Sophia Mälzer
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Beate Nicol
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, U.K
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, U.K
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.,Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany
| |
Collapse
|
9
|
Tsai NC, Hsu TS, Kuo SC, Kao CT, Hung TH, Lin DG, Yeh CS, Chu CC, Lin JS, Lin HH, Ko CY, Chang TH, Su JC, Lin YCJ. Large-scale data analysis for robotic yeast one-hybrid platforms and multi-disciplinary studies using GateMultiplex. BMC Biol 2021; 19:214. [PMID: 34560855 PMCID: PMC8461970 DOI: 10.1186/s12915-021-01140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation. RESULTS We developed a new tool named GateMultiplex with high computing performance using C++. GateMultiplex incorporated a graphical user interface (GUI), which allows the operation without any programming skills. Flexible parameter options were designed for multiple experimental purposes to enable the application of GateMultiplex even beyond Y1H platforms. We further demonstrated the data analysis from other three fields using GateMultiplex, the identification of lead compounds in preclinical cancer drug discovery, the crop line selection in precision agriculture, and the ocean pollution detection from deep-sea fishery. CONCLUSIONS The user-friendly GUI, fast C++ computing speed, flexible parameter setting, and applicability of GateMultiplex facilitate the feasibility of large-scale data analysis in life science fields.
Collapse
Affiliation(s)
- Ni-Chiao Tsai
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Shu Hsu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shang-Che Kuo
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chung-Ting Kao
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Da-Gin Lin
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Chen Chu
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chia-Ying Ko
- Department of Life Sciences and Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Gómez L, Niegowska M, Navarro A, Amendola L, Arukwe A, Ait-Aissa S, Balzamo S, Barreca S, Belkin S, Bittner M, Blaha L, Buchinger S, Busetto M, Carere M, Colzani L, Dellavedova P, Denslow N, Escher BI, Hogstrand C, Khan EA, König M, Kroll KJ, Lacchetti I, Maillot-Marechal E, Moscovici L, Potalivo M, Sanseverino I, Santos R, Schifferli A, Schlichting R, Sforzini S, Simon E, Shpigel E, Sturzenbaum S, Vermeirssen E, Viarengo A, Werner I, Lettieri T. Estrogenicity of chemical mixtures revealed by a panel of bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147284. [PMID: 33957588 PMCID: PMC8210648 DOI: 10.1016/j.scitotenv.2021.147284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 05/06/2023]
Abstract
Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17β-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17β-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75-304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays - based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.
Collapse
Affiliation(s)
- Livia Gómez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Magdalena Niegowska
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Luca Amendola
- ARPA Lazio, Regional Agency for Environmental Protection, Via G. Saredo 52, 00173 Rome, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Selim Ait-Aissa
- French National Institute for Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Stefania Balzamo
- ISPRA - Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | - Salvatore Barreca
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michal Bittner
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic
| | | | - Maddalena Busetto
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Mario Carere
- ISS-National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luisa Colzani
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Pierluisa Dellavedova
- ARPA Lombardia, Regional Agency for Environmental Protection, Via Rosellini 17, 20124 Milan, Italy
| | - Nancy Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Christer Hogstrand
- Metal Metabolism Group, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford St, London SE1 9NH, UK
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Maria König
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kevin J Kroll
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ines Lacchetti
- ISS-National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emmanuelle Maillot-Marechal
- French National Institute for Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Liat Moscovici
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Monica Potalivo
- ISPRA - Environmental Metrology Unit, Via di Castel Romano 100, 00128 Rome, Italy
| | - Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Andrea Schifferli
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Rita Schlichting
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Susanna Sforzini
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (CNR-IAS), Via de Marini 6, Genova 16149, Italy
| | - Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Etai Shpigel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Stephen Sturzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, UK
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Aldo Viarengo
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (CNR-IAS), Via de Marini 6, Genova 16149, Italy
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
11
|
Niu L, Ahlheim J, Glaser C, Gunold R, Henneberger L, König M, Krauss M, Schwientek M, Zarfl C, Escher BI. Suspended Particulate Matter-A Source or Sink for Chemical Mixtures of Organic Micropollutants in a Small River under Baseflow Conditions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5106-5116. [PMID: 33759504 DOI: 10.1021/acs.est.0c07772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.
Collapse
Affiliation(s)
| | | | - Clarissa Glaser
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | | | | | | | | | - Marc Schwientek
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Beate I Escher
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
- Department Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
12
|
Neale PA, O’Brien JW, Glauch L, König M, Krauss M, Mueller JF, Tscharke B, Escher BI. Wastewater treatment efficacy evaluated with in vitro bioassays. WATER RESEARCH X 2020; 9:100072. [PMID: 33089130 PMCID: PMC7559864 DOI: 10.1016/j.wroa.2020.100072] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 05/05/2023]
Abstract
Bioassays show promise as a complementary approach to chemical analysis to assess the efficacy of wastewater treatment processes as they can detect the mixture effects of all bioactive chemicals in a sample. We investigated the treatment efficacy of ten Australian wastewater treatment plants (WWTPs) covering 42% of the national population over seven consecutive days. Solid-phase extracts of influent and effluent were subjected to an in vitro test battery with six bioassays covering nine endpoints that captured the major modes of action detected in receiving surface waters. WWTP influents and effluents were compared on the basis of population- and flow-normalised effect loads, which provided insights into the biological effects exhibited by the mixture of chemicals before and after treatment. Effect removal efficacy varied between effect endpoints and depended on the treatment process. An ozonation treatment step had the best treatment efficacy, while WWTPs with only primary treatment resulted in poor removal of effects. Effect removal was generally better for estrogenic effects and the peroxisome proliferator-activated receptor than for inhibition of photosynthesis, which is consistent with the persistence of herbicides causing this effect. Cytotoxicity and oxidative stress response provided a sum parameter of all bioactive chemicals including transformation products and removal was poorer than for specific endpoints except for photosynthesis inhibition. Although more than 500 chemicals were analysed, the detected chemicals explained typically less than 10% of the measured biological effect, apart from algal toxicity, where the majority of the effect could be explained by one dominant herbicide, diuron. Overall, the current study demonstrated the utility of applying bioassays alongside chemical analysis to evaluate loads of chemical pollution reaching WWTPs and treatment efficacy.
Collapse
Affiliation(s)
- Peta A. Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- Corresponding author. Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Jake W. O’Brien
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Lisa Glauch
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Maria König
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Martin Krauss
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | - Jochen F. Mueller
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Ben Tscharke
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
- QAEHS – Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
- UFZ – Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geoscience, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland. WATER 2020. [DOI: 10.3390/w12113050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The performance of an aerated horizontal subsurface flow treatment wetland was investigated before, during and after a simulated aeration failure. Conventional wastewater parameters (e.g., carbonaceous biological oxygen demand, total nitrogen, and Escherichia coli) as well as selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) were investigated. Furthermore, the removal of biological effects was investigated using in vitro bioassays. The six bioassays selected covered environmentally relevant endpoints (indicative of activation of aryl hydrocarbon receptor, AhR; binding to the peroxisome proliferator-activated receptor gamma, PPARγ; activation of estrogen receptor alpha, ERα; activation of glucocorticoid receptor, GR; oxidative stress response, AREc32; combined algae test, CAT). During the aeration interruption phase, the water quality deteriorated to a degree comparable to that of a conventional (non-aerated) horizontal subsurface flow wetland. After the end of the aeration interruption, the analytical and biological parameters investigated recovered at different time periods until their initial treatment performance. Treatment efficacy for conventional parameters was recovered within a few days, but no complete recovery of treatment efficacy could be observed for bioassays AhR, AREc32 and CAT in the 21 days following re-start of the aeration system. Furthermore, the removal efficacy along the flow path for most of the chemicals and bioassays recovered as it was observed in the baseline phase. Only for the activation of AhR and AREc32 there was a shift of the internal treatment profile from 12.5% to 25% (AhR) and 50% (AREc32) of the fractional length.
Collapse
|