1
|
Zhao Y, Yin N, Yang R, Faiola F. Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem Toxicol 2024; 193:115022. [PMID: 39326696 DOI: 10.1016/j.fct.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the in vivo microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and in silico models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Lee Y, Byeon E, Lee JS, Maszczyk P, Kim HS, Sayed AEDH, Yang Z, Lee JS, Kim DH. Differential susceptibility to hypoxia in hypoxia-inducible factor 1-alpha (HIF-1α)-targeted freshwater water flea Daphnia magna mutants. MARINE POLLUTION BULLETIN 2024; 209:117138. [PMID: 39486200 DOI: 10.1016/j.marpolbul.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The water flea, Daphnia magna, serves as a key model organism for investigating the response of aquatic organisms to environmental stressors, including hypoxia. Hypoxia-inducible factor 1-alpha (HIF-1α) is a central regulatory protein involved in the cellular response to hypoxic conditions. In this study, we used CRISPR/Cas9 gene editing to create D. magna mutant lines with targeted alterations in the HIF-1α gene. Mutants demonstrated decreased survival and reproductive output and down-regulated genes for the HIF-1α-mediated pathway in low-oxygen conditions. These findings suggest that the HIF-1α pathway is a critical component of resistance to hypoxia in D. magna. This study provides novel insights into the molecular basis of hypoxia tolerance of HIF-1α in D. magna and expands our understanding of how aquatic organisms can adapt to or be challenged by changing oxygen levels in the face of global environmental changes.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Yuan D, Zhang B. Assessing the chronic toxicity of climbazole to Daphnia magna: Physiological, biochemical, molecular, and reproductive perspectives. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110061. [PMID: 39437869 DOI: 10.1016/j.cbpc.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The widespread use of climbazole (CBZ) has led to its increased presence in aquatic environments, potentially threatening freshwater ecosystems. However, evidence regarding the harmful effects of CBZ on aquatic organisms remains limited. In this study, Daphnia magna was exposed to CBZ at concentrations of 0, 0.2, 20, and 200 μg/L for 21 days to evaluate its chronic toxicity through assessment of life-history traits, physiological parameters, biochemical analyses, and gene expression. The results indicated that CBZ exposure delayed the days to the first brood, reduced the frequency of molting per adult, decreased the offspring number at first brood, diminished the body length, and decreased both the total number of broods per female and the total number of offspring per female. Additionally, CBZ inhibited the swimming speed, filtration rate, and ingestion rate. Moreover, CBZ altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while increasing malondialdehyde (MDA) levels. Gene expression analysis revealed varied responses in mRNA levels related to metabolic detoxification (cyp360a8, gst, and p-gp), digestive enzymes (α-amylase, α-esterase, and trypsin), energy (ak), oxygen transport (dhb), and reproduction (nvd, cyp314, ecr, vtg, and jhe) following CBZ exposure. These results indicate that the presence of CBZ in aquatic environments can induce toxicity by altering energy acquisition, supply, and metabolism; impairing metabolic detoxification pathways; eliciting oxidative stress; and causing reproductive toxicity in D. magna.
Collapse
Affiliation(s)
- Donglin Yuan
- School of Chemical and Environmental Engineering, Jiaozuo University, Jiaozuo, Henan 454000, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Ecotoxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Kang X, Zhou Y, Liu Q, Liu M, Chen J, Zhang Y, Wei J, Wang Y. Characterization and Expression of the Cytochrome P450 Genes in Daphnia magna Exposed to Cerium Oxide Nanoparticles. Int J Mol Sci 2024; 25:10812. [PMID: 39409143 PMCID: PMC11476439 DOI: 10.3390/ijms251910812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
As cerium oxide nanoparticles (nCeO2) continue to infiltrate aquatic environments, the resulting health risks to exposed aquatic organisms are becoming evident. Cytochrome P450 (CYP) enzymes are integral to the detoxification processes in these species. Herein, we conducted a genomic analysis of CYPs in Daphnia magna, encompassing phylogenetic relationships, gene structure, and chromosomal localization. We identified twenty-six CYPs in D. magna, categorizing them into four clans and seven families, distributed across six chromosomes and one unanchored scaffold. The encoded CYP proteins varied in length from 99 to 585 amino acids, with molecular weights ranging from 11.6 kDa to 66.4 kDa. A quantitative real-time PCR analysis demonstrated a significant upregulation of CYP4C1.4, CYP4C1.5, CYP4C1.6, CYP4c3.3, and CYP4c3.6 in D. magna exposed to 150 mg/L nCeO2 for 24 h. The transcript levels of CYP4C1.3, CYP18a1, CYP4C1.1, and CYP4c3.9 were notably downregulated in D. magna exposed to 10 mg/L nCeO2 for 48 h. A further transcriptomic analysis identified differential expression patterns of eight CYP genes, including CYP4C1.3, in response to nCeO2 exposure. The differential regulation observed across most of the 26 CYPs highlights their potential role in xenobiotic detoxification in D. magna, thereby enhancing our understanding of CYP-mediated toxicological responses to metal nanoparticles in aquatic invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Wei
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian 116021, China; (X.K.); (Y.Z.); (Q.L.); (M.L.); (J.C.); (Y.Z.)
| | - Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian 116021, China; (X.K.); (Y.Z.); (Q.L.); (M.L.); (J.C.); (Y.Z.)
| |
Collapse
|
5
|
Ray SS, Parihar K, Goyal N, Mahapatra DM. Synergistic insights into pesticide persistence and microbial dynamics for bioremediation. ENVIRONMENTAL RESEARCH 2024; 257:119290. [PMID: 38823612 DOI: 10.1016/j.envres.2024.119290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Rampant use of fertilizers and pesticides for boosting agricultural crop productivity has proven detrimental impact on land, water, and air quality globally. Although fertilizers and pesticides ensure greater food security, their unscientific management negatively impacts soil fertility, structure of soil microbiome and ultimately human health and hygiene. Pesticides exert varying impacts on soil properties and microbial community functions, contingent on factors such as their chemical structure, mode of action, toxicity, and dose-response characteristics. The diversity of bacterial responses to different pesticides presents a valuable opportunity for pesticide remediation. In this context, OMICS technologies are currently under development, and notable advancements in gene editing, including CRISPR technologies, have facilitated bacterial engineering, opening promising avenues for reducing toxicity and enhancing biological remediation. This paper provides a holistic overview of pesticide dynamics, with a specific focus on organophosphate, organochlorine, and pyrethroids. It covers their occurrence, activity, and potential mitigation strategies, with an emphasis on the microbial degradation route. Subsequently, the pesticide degradation pathways, associated genes and regulatory mechanisms, associated OMICS approaches in soil microbes with a special emphasis on CRISPR/Cas9 are also being discussed. Here, we analyze key environmental factors that significantly impact pesticide degradation mechanisms and underscore the urgency of developing alternative strategies to diminish our reliance on synthetic chemicals.
Collapse
Affiliation(s)
- Srishti Sinha Ray
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Kashish Parihar
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Nishu Goyal
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Durga Madhab Mahapatra
- School of Engineering, UPES, Dehradun, 248007, Uttarakhand, India; Energy and Wetlands Research Group, Center for Ecological Sciences, Indian Institute of Science (IISc), Bangalore, 560012, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, USA
| |
Collapse
|
6
|
Guerrero-Limón G, Muller M. Exploring estrogen antagonism using CRISPR/Cas9 to generate specific mutants for each of the receptors. CHEMOSPHERE 2024; 364:143100. [PMID: 39159765 DOI: 10.1016/j.chemosphere.2024.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
7
|
Zeng L, Wang YH, Ai CX, Zhang B, Zhang H, Liu ZM, Yu MH, Hu B. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172633. [PMID: 38643877 DOI: 10.1016/j.scitotenv.2024.172633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
This study aims to evaluate the effects of oxytetracycline (OTC) on detoxification and oxidative defense in the hepatopancreas and intestine of Chinese mitten crab (Eriocheir sinensis) under cadmium (Cd) stress. The crab was exposed to 0.6 μM Cd, 0.6 μM OTC, and 0.6 μM Cd plus 0.6 μM OTC for 42 days. Our results showed that in the intestine, OTC alone enhanced protein carboxylation (PC) and malondialdehyde (MDA) contents, which was associated with the increased OTC accumulation. Compared to Cd alone, Cd plus OTC increased Cd and OTC contents, and reduced detoxification (i.e., glutathione (GSH) content, gene expressions of cytochrome P450 (CYP) isoforms, 7-ethoxyresorufin O-deethylase (EROD) activity, mRNA levels and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), and antioxidant defense (i.e., gene expressions and activities of catalase (CAT) and superoxide dismutase (SOD)) in the intestine, leading to the increased in PC and MDA contents, suggesting that OTC had a synergistic effect on Cd-induced oxidative damage. In the hepatopancreas, although OTC alone increased OTC accumulation, it did not affect PC and MDA contents. Compared to Cd alone, Cd plus OTC reduced MDA content, which was closely related to the improvement of detoxification (i.e., GSH content, mRNA levels of CYP isoforms, EROD activity, gene expressions and activities of GPx, GR and GST), and antioxidant defense (gene expressions and activities of CAT and SOD, metallothionein content). Aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2) transcriptional expressions were positively correlated with most detoxification- and antioxidant-related gene expressions, respectively, indicating that AhR and Nrf2 were involved in the regulation of these gene expressions. Our results unambiguously demonstrated that OTC had tissue-specific effects on Cd-induced toxicological effect in E. sinensis, which contributed to accurately evaluating Cd toxicity modulated by TCs in crab.
Collapse
Affiliation(s)
- Lin Zeng
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China; Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China.
| | - Yong-Hong Wang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bin Zhang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Hui Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui 323000, PR China
| | - Min-Hui Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China
| |
Collapse
|
8
|
Ohnuki S, Tokishita S, Kojima M, Fujiwara S. Effect of chlorpyrifos-exposure on the expression levels of CYP genes in Daphnia magna and examination of a possibility that an up-regulated clan 3 CYP, CYP360A8, reacts with pesticides. ENVIRONMENTAL TOXICOLOGY 2024; 39:3641-3653. [PMID: 38504311 DOI: 10.1002/tox.24224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 μg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).
Collapse
Affiliation(s)
- Shinpei Ohnuki
- Odawara Research Center, Nippon Soda Co., Ltd., Odawara, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shinichi Tokishita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
10
|
Bertrand L, Iturburu FG. Pesticides bioassays using neotropical aquatic species: Trends during the last twenty years and future challenges in Argentina. CHEMOSPHERE 2023; 326:138369. [PMID: 36935061 DOI: 10.1016/j.chemosphere.2023.138369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of pesticides in aquatic ecosystems is one of the most relevant stressors which biota usually face. Laboratory tests using model organisms for pesticides toxicity assessment are employed worldwide. The use of these species has been encouraged in the scientific community due to their advantageous features and their acceptation by regulatory and standardization organizations. However, non-model species as well as those belonging particular ecosystems could contribute in the laboratory-field toxicity extrapolation. In this context, this work aims on exploring the state of the ecotoxicological studies of pesticides in neotropical aquatic species, focusing on bioassays performed in Argentina over the last 20 years as a case of study. Furthermore, we analyzed the possible advantages and disadvantages of these studies, possible differential sensitivities among native and model species, and future challenges to be faced. The analysis of more than 150 publications allowed identify the chemical identity of tested compounds, organisms used for the bioassays, characteristics of the experimental designs, and the toxicity endpoints. Particularly, the studied cases showed that the tested chemicals are related to those most used in the agricultural activity in Argentina, the predilection for particular species in some taxonomic groups (e.g. amphibians), and the wide election of biochemical biomarkers in the studies. Regarding the sensitivity comparison between native and non-native species, the amount of data available indicates that there is not a clear difference beyond some particular cases. However, deeper understanding of toxic effects of pesticides on non-model species could help in a more comprehensive ecological risk assessment in different ecosystems.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de La Torre Esq. Medina Allende, 5000, Córdoba, Argentina.
| | - Fernando Gastón Iturburu
- Instituto de Investigaciones Marinas y Costeras - IIMyC, Facultad de Ciencias Exactas y Naturales, CONICET, UNMdP, Dean Funes 3350, 7600, Mar del Plata, Argentina.
| |
Collapse
|
11
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
12
|
Sanpradit P, Peerakietkhajorn S. Disturbances in growth, oxidative stress, energy reserves and the expressions of related genes in Daphnia magna after exposure to ZnO under thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161682. [PMID: 36682557 DOI: 10.1016/j.scitotenv.2023.161682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
The toxicological effects of metal contamination are influenced by the ambient temperature. Therefore, global warming affects the toxicity of metal contamination in aquatic ecosystems. ZnO is widely used as a catalyst in many industries, and causes contamination in aquatic ecosystems. Here, we investigated the effects of ZnO concentration under elevated temperature by observing growth, oxidative stress, energy reserves and related gene expression in exposed Daphnia magna. Body length and growth rate increased in neonates exposed to ZnO for 2 days but decreased at 9 and 21 days under elevated temperature. ZnO concentration and elevated temperature induced oxidative stress in mature D. magna by reducing superoxide dismutase (SOD) activity and increasing malondialdehyde (MDA) levels. In contrast, juveniles were unaffected. Carbohydrate, protein and caloric contents were reduced throughout development in D. magna treated with ZnO and elevated temperature in all exposure periods (2, 9 and 21 days). However, lipid content also decreased in mature D. magna treated with ZnO cultured under elevated temperature, while that of juveniles showed an increase in lipid content. Therefore, energy was perhaps allocated to physiological processes for detoxification and homeostasis. Moreover, expression patterns of genes related to physiological processes changed under elevated temperature and ZnO exposure. Taken together, our results highlight that the combination of temperature and ZnO concentration induced toxicity in D. magna. This conclusion was confirmed by the Integrated Biological Response (IBR) index. This study shows that changes in biological levels of organization could be used to monitor environmental change using D. magna as a bioindicator.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
13
|
Ohnuki S, Osawa Y, Matsumoto T, Tokishita S, Fujiwara S. Utilization of piperonyl butoxide and 1-aminobenzotriazole for metabolic studies of toxic chemicals in Daphnia magna and Chironomus yoshimatsui. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:25-37. [PMID: 36564585 DOI: 10.1007/s10646-022-02617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Daphnids and chironomids have been used to assess the ecological effects of chemicals released into water bodies; however, the toxicity mechanisms in organisms are generally difficult to identify. Here, we developed a system capable of estimating the contribution of cytochrome P450 (CYP) to the metabolism of test substances in Daphnia magna and Chironomus yoshimatsui based on toxicity differences in the absence and presence of the CYP inhibitors piperonyl butoxide (PBO) and 1-aminobenzotriazole (ABT). The optimum concentrations of PBO and ABT that could effectively reduce the toxicity of diazinon, which is toxic after oxidative metabolism in vivo, were determined as 0.5 and 0.6 mg/L for D. magna, and 2.0 and 40.0 mg/L for C. yoshimatsui, respectively. Acute immobilization tests of 15 insecticides were conducted for D. magna and C. yoshimatsui, with and without the optimum concentrations of PBO or ABT. In the presence of either inhibitor, chlorpyrifos and chlorfenapyr toxicity was reduced in both organisms, whereas those of thiocyclam, nereistoxin, and silafluofen were enhanced in C. yoshimatsui. Liquid chromatography-mass spectrometry analysis of D. magna and C. yoshimatsui samples exposed to chlorfenapyr confirmed that the level of the active metabolite produced by CYP was decreased by PBO or ABT in both organisms. The system to which the test substance was co-exposed to PBO or ABT will be valuable for estimating the contribution of CYPs to metabolism and elucidating the toxicity mechanism in daphnids and chironomids.
Collapse
Affiliation(s)
- Shinpei Ohnuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
- Odawara Research Center, Nippon Soda Co., Ltd., 345, Takada, Odawara, Kanagawa, 250-0280, Japan
| | - Yoko Osawa
- Odawara Research Center, Nippon Soda Co., Ltd., 345, Takada, Odawara, Kanagawa, 250-0280, Japan
| | - Takeru Matsumoto
- Odawara Research Center, Nippon Soda Co., Ltd., 345, Takada, Odawara, Kanagawa, 250-0280, Japan
| | - Shinichi Tokishita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
14
|
Melo de Almeida E, Tisserand F, Faria M, Chèvre N. Efficiency of Several Cytochrome P450 Biomarkers in Highlighting the Exposure of Daphnia magna to an Organophosphate Pesticide. TOXICS 2022; 10:482. [PMID: 36006161 PMCID: PMC9416226 DOI: 10.3390/toxics10080482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The cytochromes P450 (CYP450) represent a major enzyme family operating mostly in the first step of xenobiotic detoxification in aquatic organisms. The ability to measure these CYP450 enzymes' activities provides a crucial tool to understand organisms' response to chemical stressors. However, research on CYP450 activity measurement is still limited and has had variable success. In the present study, we optimize, compile, and compare existing scientific information and techniques for a series of CYP450 biomarkers (EROD, MROD, ECOD, APND, and ERND) used on Daphnia magna. Additionally, we explored these CYP450 biomarkers' activities through the first 5 days of life of daphnids, providing a link between their age and sensitivity to chemicals. In the experiment, daphnids were exposed to an organophosphate pesticide (diazinon) from birth to measure the molecular response of the detoxification process. Our results suggest EROD as the most applicable biomarker for organisms such as D. magna, with a higher organophosphate detoxification rate in daphnids that are 2 and 5 days old. Additionally, a larger body size allowed a more accurate EROD measurement; hence, we emphasize the use of 5-day-old daphnids when analyzing their detoxification response.
Collapse
Affiliation(s)
- Elodie Melo de Almeida
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
- School of Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Floriane Tisserand
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Micaela Faria
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nathalie Chèvre
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022; 13:16. [PMID: 35941607 PMCID: PMC9360664 DOI: 10.1186/s13227-022-00199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Water fleas of the genus Daphnia have been a model system for hundreds of years and is among the best studied ecological model organisms to date. Daphnia are planktonic crustaceans with a cyclic parthenogenetic life-cycle. They have a nearly worldwide distribution, inhabiting standing fresh- and brackish water bodies, from small temporary pools to large lakes. Their predominantly asexual reproduction allows for the study of phenotypes excluding genetic variation, enabling us to separate genetic from non-genetic effects. Daphnia are often used in studies related to ecotoxicology, predator-induced defence, host–parasite interactions, phenotypic plasticity and, increasingly, in evolutionary genomics. The most commonly studied species are Daphnia magna and D. pulex, for which a rapidly increasing number of genetic and genomic tools are available. Here, I review current research topics, where the Daphnia model system plays a critical role.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
16
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
17
|
Guo M, Chen H, Dong S, Zhang Z, Luo H. CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chin Med 2022; 17:33. [PMID: 35246186 PMCID: PMC8894546 DOI: 10.1186/s13020-022-00584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene editing technology has opened a new era of genome interrogation and genome engineering because of its ease operation and high efficiency. An increasing number of plant species have been subjected to site-directed gene editing through this technology. However, the application of CRISPR-Cas technology to medicinal plants is still in the early stages. Here, we review the research history, structural characteristics, working mechanism and the latest derivatives of CRISPR-Cas technology, and discussed their application in medicinal plants for the first time. Furthermore, we creatively put forward the development direction of CRISPR technology applied to medicinal plant gene editing. The aim is to provide a reference for the application of this technology to genome functional studies, synthetic biology, genetic improvement, and germplasm innovation of medicinal plants. CRISPR-Cas is expected to revolutionize medicinal plant biotechnology in the near future.
Collapse
Affiliation(s)
- Miaoxian Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuting Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongmei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Zhang T, Wang Y, Zhao Z, Xu S, Shen W. Degradation of Carbendazim by Molecular Hydrogen on Leaf Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:621. [PMID: 35270091 PMCID: PMC8912477 DOI: 10.3390/plants11050621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
Although molecular hydrogen can alleviate herbicide paraquat and Fusarium mycotoxins toxicity in plants and animals, whether or how molecular hydrogen influences pesticide residues in plants is not clear. Here, pot experiments in greenhouse revealed that degradation of carbendazim (a benzimidazole pesticide) in leaves could be positively stimulated by molecular hydrogen, either exogenously applied or with genetic manipulation. Pharmacological and genetic increased hydrogen gas could increase glutathione metabolism and thereafter carbendazim degradation, both of which were abolished by the removal of endogenous glutathione with its synthetic inhibitor, in both tomato and in transgenic Arabidopsis when overexpressing the hydrogenase 1 gene from Chlamydomonas reinhardtii. Importantly, the antifungal effect of carbendazim in tomato plants was not obviously altered regardless of molecular hydrogen addition. The contribution of glutathione-related detoxification mechanism achieved by molecular hydrogen was confirmed. Our results might not only illustrate a previously undescribed function of molecular hydrogen in plants, but also provide an environmental-friendly approach for the effective elimination or reduction of pesticides residues in crops when grown in pesticides-overused environmental conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Yueqiao Wang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Zhushan Zhao
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (T.Z.); (Y.W.); (Z.Z.)
| |
Collapse
|
19
|
Kato K, Okamura K, Hiki K, Kintsu H, Nohara K, Yamagishi T, Nakajima N, Watanabe H, Yamamoto H. Potential differences in chitin synthesis ability cause different sensitivities to diflubenzuron among three strains of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106071. [PMID: 34995867 DOI: 10.1016/j.aquatox.2021.106071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Ecotoxicity testing of crustaceans using Daphnia magna has been implemented in the chemical management systems of various countries. While the chemical sensitivity of D. magna varies depending on genetically different clonal lineages, the strain used in ecotoxicity tests, including the acute immobilization test (OECD TG202), has not been specified. We hypothesized that comprehensive gene expression profiles could provide useful information on phenotypic differences among strains, including chemical sensitivity. To test this hypothesis, we performed mRNA sequencing on three different strains (NIES, England, and Clone 5) of D. magna under culture conditions. The resulting expression profile of the NIES strain was clearly different compared to the profiles of the other two strains. Gene ontology (GO) enrichment analysis suggested that chitin metabolism was significantly enriched in the NIES strain compared to that in the England strain. Consistent with the GO analysis, evidence of high levels of chitin metabolism in the NIES strain were observed across multiple levels of biological organization, such as expression of chitin synthase genes, chitin content, and chitinase activity, which suggested that the different strains would exhibit different sensitivities to chemicals used to inhibit chitin synthesis. We found that among all strains, the NIES strain was more tolerant to diflubenzuron, a chitin synthesis inhibitor, with a 14-fold difference in the 48 h-EC50 value for the acute immobilization test compared to the England strain. The present study demonstrates that the differences among strains in chitin metabolism may lead to sensitivity difference to diflubenzuron, and serves as a case study of the usefulness of comprehensive gene expression profiles in finding sensitivity differences.
Collapse
Affiliation(s)
- Kota Kato
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroyuki Kintsu
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takahiro Yamagishi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Haruna Watanabe
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Yamamoto
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| |
Collapse
|
20
|
Byeon E, Kim MS, Kim DH, Lee Y, Jeong H, Lee JS, Hong SA, Park JC, Kang HM, Sayed AEDH, Kato Y, Bae S, Watanabe H, Lee YH, Lee JS. The freshwater water flea Daphnia magna NIES strain genome as a resource for CRISPR/Cas9 gene targeting: The glutathione S-transferase omega 2 gene. AQUATIC TOXICOLOGY 2022; 242:106021. [PMID: 34856461 DOI: 10.1016/j.aquatox.2021.106021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The water flea Daphnia magna is a small freshwater planktonic animal in the Cladocera. In this study, we assembled the genome of the D. magna NIES strain, which is widely used for gene targeting but has no reported genome. We used the long-read sequenced data of the Oxford nanopore sequencing tool for assembly. Using 3,231 genetic markers, the draft genome of the D. magna NIES strain was built into ten linkage groups (LGs) with 483 unanchored contigs, comprising a genome size of 173.47 Mb. The N50 value of the genome was 12.54 Mb and the benchmarking universal single-copy ortholog value was 98.8%. Repeat elements in the D. magna NIES genome were 40.8%, which was larger than other Daphnia spp. In the D. magna NIES genome, 15,684 genes were functionally annotated. To assess the genome of the D. magna NIES strain for CRISPR/Cas9 gene targeting, we selected glutathione S-transferase omega 2 (GST-O2), which is an important gene for the biotransformation of arsenic in aquatic organisms, and targeted it with an efficient make-up (25.0%) of mutant lines. In addition, we measured reactive oxygen species and antioxidant enzymatic activity between wild type and a mutant of the GST-O2 targeted D. magna NIES strain in response to arsenic. In this study, we present the genome of the D. magna NIES strain using GST-O2 as an example of gene targeting, which will contribute to the construction of deletion mutants by CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Ah Hong
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Sangsu Bae
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep 2021; 11:7326. [PMID: 33795753 PMCID: PMC8016896 DOI: 10.1038/s41598-021-86578-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
The cladoceran crustacean Daphnia has long been a model of energy allocation studies due to its important position in the trophic cascade of freshwater ecosystems. However, the loci for controlling energy allocation between life history traits still remain unknown. Here, we report CRISPR/Cas-mediated target mutagenesis of DNA methyltransferase 3.1 (DNMT3.1) that is upregulated in response to caloric restriction in Daphnia magna. The resulting biallelic mutant is viable and did not show any change in growth rate, reproduction, and longevity under nutrient rich conditions. In contrast, under starved conditions, the growth rate of this DNMT3.1 mutant was increased but its reproduction was reciprocally reduced compared to the wild type when the growth and reproduction activities competed during a period from instar 4 to 8. The life span of this mutant was significantly shorter than that of the wild type. We also compared transcriptomes between DNMT3.1 mutant and wild type under nutrient-rich and starved conditions. Consistent with the DNMT3.1 mutant phenotypes, the starved condition led to changes in the transcriptomes of the mutant including differential expression of vitellogenin genes. In addition, we found upregulation of the I am not dead yet (INDY) ortholog, which has been known to shorten the life span in Drosophila, explaining the shorter life span of the DNMT3.1 mutant. These results establish DNMT3.1 as a key regulator for life span and energy allocation between growth and reproduction during caloric restriction. Our findings reveal how energy allocation is implemented by selective expression of a DNMT3 ortholog that is widely distributed among animals. We also infer a previously unidentified adaptation of Daphnia that invests more energy for reproduction than growth under starved conditions.
Collapse
|