1
|
Müller MN, Vicente Ferreira Junior A, Zanardi Lamardo E, Yogui GT, Flores Montes MDJ, Silva MA, Lima EJAC, Rojas LAV, Jannuzzi LGDS, Cunha MDGGDS, Melo PAMDC, Carvalho VPCD, Carneiro YMM, Carreira RDS, Araujo M, Santos LPDS. Finding the needle in a haystack: Evaluation of ecotoxicological effects along the continental shelf break during the Brazilian mysterious oil spill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124422. [PMID: 38914197 DOI: 10.1016/j.envpol.2024.124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Oceanic oil spills present significant ecological risks that have the potential to contaminate extensive areas, including coastal regions. The occurrence of the 2019 oil spill event in Brazil resulted in over 3000 km of contaminated beaches and shorelines. While assessing the impact on benthic and beach ecosystems is relatively straightforward due to direct accessibility, evaluating the ecotoxicological effects of open ocean oil spills on the pelagic community is a complex task. Difficulties are associated with the logistical challenges of responding promptly and, in case of the Brazilian mysterious oil spill, to the subsurface propagation of the oil that impeded remote visual detection. An oceanographic expedition was conducted in order to detect and evaluate the impact of this oil spill event along the north-eastern Brazilian continental shelf. The pursuit of dissolved and dispersed oil compounds was accomplished by standard oceanographic methods including seawater polycyclic aromatic hydrocarbons (PAHs) analysis, biomass stable carbon isotope (δ13C), particulate organic carbon to particulate organic nitrogen (POC:PON) ratios, nutrient analysis and ecotoxicological bioassays using the naupliar phase of the copepod Tisbe biminiensis. Significant ecotoxicological effects, reducing naupliar development by 20-40 %, were indicated to be caused by the presence of dispersed oil in the open ocean. The heterogeneous distribution of oil droplets aggravated the direct detection and biochemical indicators for oil are presented and discussed. Our findings serve as a case study for identifying and tracing subsurface propagation of oil, demonstrating the feasibility of utilizing standard oceanographic and ecotoxicological methods to assess the impacts of oil spill events in the open ocean. Ultimately, it encourages the establishment of appropriate measures and responses regarding the liability and regulation of entities to be held accountable for oil spills in the marine environment.
Collapse
Affiliation(s)
- Marius Nils Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil; Macau Environmental Research Institute, Macau University of Science and Technology, Macau SAR, 999078, China.
| | | | - Eliete Zanardi Lamardo
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Marcus André Silva
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | | | | | | | | | | | | | | - Renato da Silva Carreira
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil
| | - Moacyr Araujo
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
2
|
Kottuparambil S, Ashok A, Barozzi A, Michoud G, Cai C, Daffonchio D, Duarte CM, Agusti S. Tracking the early signals of crude oil in seawater and plankton after a major oil spill in the Red Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69150-69164. [PMID: 37133655 DOI: 10.1007/s11356-023-27111-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Understanding the immediate impacts of oil spills is essential to recognizing their long-term consequences on the marine environment. In this study, we traced the early (within one week) signals of crude oil in seawater and plankton after a major oil spill in October 2019 in the Red Sea. At the time of sampling, the plume had moved eastward, but we detected significant signs of incorporation of oil carbon into the dissolved organic carbon pool, resulting in a 10-20% increase in the ultraviolet (UV) absorption coefficient (a254) of chromophoric dissolved organic matter (CDOM), elevated oil fluorescence emissions, and depletion of the carbon isotope composition (δ13C) of the seawater. The abundance of the picophytoplankton Synechococcus was not affected, but the proportion of low nucleic acid (LNA) bacteria was significantly higher. Moreover, specific bacterial genera (Alcanivorax, Salinisphaera, and Oleibacter) were enriched in the seawater microbiome. Metagenome-assembled genomes (MAGs) suggested that such bacteria presented pathways for growing on oil hydrocarbons. Traces of polycyclic aromatic hydrocarbons (PAHs) were also detected in zooplankton tissues, revealing the rapid entry of oil pollutants into the pelagic food web. Our study emphasizes the early signs of short-lived spills as an important aspect of the prediction of long-term impacts of marine oil spills.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alan Barozzi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chunzhi Cai
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|