1
|
Padilla-Iglesias C, Derkx I. Hunter-gatherer genetics research: Importance and avenues. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e15. [PMID: 38516374 PMCID: PMC10955370 DOI: 10.1017/ehs.2024.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Major developments in the field of genetics in the past few decades have revolutionised notions of what it means to be human. Although currently only a few populations around the world practise a hunting and gathering lifestyle, this mode of subsistence has characterised members of our species since its very origins and allowed us to migrate across the planet. Therefore, the geographical distribution of hunter-gatherer populations, dependence on local ecosystems and connections to past populations and neighbouring groups have provided unique insights into our evolutionary origins. However, given the vulnerable status of hunter-gatherers worldwide, the development of the field of anthropological genetics requires that we reevaluate how we conduct research with these communities. Here, we review how the inclusion of hunter-gatherer populations in genetics studies has advanced our understanding of human origins, ancient population migrations and interactions as well as phenotypic adaptations and adaptability to different environments, and the important scientific and medical applications of these advancements. At the same time, we highlight the necessity to address yet unresolved questions and identify areas in which the field may benefit from improvements.
Collapse
Affiliation(s)
| | - Inez Derkx
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hu W, Hao Z, Du P, Di Vincenzo F, Manzi G, Cui J, Fu YX, Pan YH, Li H. Genomic inference of a severe human bottleneck during the Early to Middle Pleistocene transition. Science 2023; 381:979-984. [PMID: 37651513 DOI: 10.1126/science.abq7487] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2023] [Indexed: 09/02/2023]
Abstract
Population size history is essential for studying human evolution. However, ancient population size history during the Pleistocene is notoriously difficult to unravel. In this study, we developed a fast infinitesimal time coalescent process (FitCoal) to circumvent this difficulty and calculated the composite likelihood for present-day human genomic sequences of 3154 individuals. Results showed that human ancestors went through a severe population bottleneck with about 1280 breeding individuals between around 930,000 and 813,000 years ago. The bottleneck lasted for about 117,000 years and brought human ancestors close to extinction. This bottleneck is congruent with a substantial chronological gap in the available African and Eurasian fossil record. Our results provide new insights into our ancestry and suggest a coincident speciation event.
Collapse
Affiliation(s)
- Wangjie Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, China
| | - Ziqian Hao
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Pengyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | | | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Jialong Cui
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, China
| | - Yun-Xin Fu
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Key Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, China
| | - Haipeng Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|