1
|
Jandausch K, Wanjura N, Escalona H, Sann M, Beutel RG, Pohl H, Niehuis O. Polyandry and sperm competition in two traumatically inseminating species of Strepsiptera (Insecta). Sci Rep 2024; 14:10447. [PMID: 38714726 PMCID: PMC11076583 DOI: 10.1038/s41598-024-61109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/02/2024] [Indexed: 05/10/2024] Open
Abstract
Polyandry, the practice of females mating with multiple males, is a strategy found in many insect groups. Whether it increases the likelihood of receiving beneficial genes from male partners and other potential benefits for females is controversial. Strepsiptera are generally considered monandrous, but in a few species females have been observed copulating serially with multiple males. Here we show that the offspring of a single female can have multiple fathers in two Strepsiptera species: Stylops ovinae (Stylopidae) and Xenos vesparum (Xenidae). We studied female polyandry in natural populations of these two species by analysis of polymorphic microsatellite loci. Our results showed that several fathers can be involved in both species, in some cases up to four. Mating experiments with S. ovinae have shown that the first male to mates with a given female contributes to a higher percentage of the offspring than subsequent males. In X. vesparum, however, we found no significant correlation between mating duration and offspring contribution. The prolonged copulation observed in S. ovinae may have the advantage of reducing competition with sperm from other males. Our results show that monandry may not be the general pattern of reproduction in the insect order Strepsiptera.
Collapse
Affiliation(s)
- Kenny Jandausch
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany.
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany.
- Institute for Anatomie I, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany.
| | - Nico Wanjura
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Hermes Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Manuela Sann
- Institute for Biology (190T), University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Brand JN. Support for a radiation of free-living flatworms in the African Great Lakes region and the description of five new Macrostomum species. Front Zool 2023; 20:31. [PMID: 37670326 PMCID: PMC10478486 DOI: 10.1186/s12983-023-00509-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The African Great Lakes have long been recognized as an excellent location to study speciation. Most famously, cichlid fishes have radiated in Lake Tanganyika and subsequently spread into Lake Malawi and Lake Victoria, where they again radiated. Other taxa have diversified in these lakes, such as catfish, ostracods, gastropods, and Monegenean gill parasites of cichlids. However, these radiations have received less attention, and the process leading to their speciation in this unique region remains to be further explored. Here I present evidence that suggests a radiation of Macrostomum flatworms has occurred in the African Great Lakes region, offering a good opportunity for such investigations. RESULTS Recent field work has revealed a monophyletic clade of 16 Macrostomum flatworms that have, to date, only been collected from Lake Tanganyika. Additionally, a species collected from Lake Malawi was found nested within this clade. Molecular phylogenetic analysis, largely based on transcriptome data, suggests that this clade underwent rapid speciation, possibly due to a large habitat diversity in the lake. I also observed significant differences in the sperm morphology of these flatworms compared to those of species found outside Lake Tanganyika and Lake Malawi. These included the elongation of an anterior structure, a reduction in the size of the lateral sperm bristles, and changes in relative proportions. I propose functional hypotheses for these changes in sperm design, and formally describe Macrostomum gracilistylum sp. nov from Lake Malawi and its sister species Macrostomum crassum sp. nov., Macrostomum pellitum sp. nov., Macrostomum longispermatum sp. nov., and Macrostomum schäreri sp. nov., from Lake Tanganyika. CONCLUSIONS The available evidence is consistent with the hypothesis that Macrostomum flatworms have radiated in Lake Tanganyika and subsequently spread to Lake Malawi. However, whether this represents a bona fide adaptive radiation still needs to be determined. Therefore, the African Great Lakes are promising targets for further research into flatworm diversity and speciation.
Collapse
Affiliation(s)
- Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland.
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Science, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Wiberg RAW, Brand JN, Viktorin G, Mitchell JO, Beisel C, Schärer L. Genome assemblies of the simultaneously hermaphroditic flatworms Macrostomum cliftonense and Macrostomum hystrix. G3 (BETHESDA, MD.) 2023; 13:jkad149. [PMID: 37398989 PMCID: PMC10468722 DOI: 10.1093/g3journal/jkad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
The free-living, simultaneously hermaphroditic flatworms of the genus Macrostomum are increasingly used as model systems in various contexts. In particular, Macrostomum lignano, the only species of this group with a published genome assembly, has emerged as a model for the study of regeneration, reproduction, and stem-cell function. However, challenges have emerged due to M. lignano being a hidden polyploid, having recently undergone whole-genome duplication and chromosome fusion events. This complex genome architecture presents a significant roadblock to the application of many modern genetic tools. Hence, additional genomic resources for this genus are needed. Here, we present such resources for Macrostomum cliftonense and Macrostomum hystrix, which represent the contrasting mating behaviors of reciprocal copulation and hypodermic insemination found in the genus. We use a combination of PacBio long-read sequencing and Illumina shot-gun sequencing, along with several RNA-Seq data sets, to assemble and annotate highly contiguous genomes for both species. The assemblies span ∼227 and ∼220 Mb and are represented by 399 and 42 contigs for M. cliftonense and M. hystrix, respectively. Furthermore, high BUSCO completeness (∼84-85%), low BUSCO duplication rates (8.3-6.2%), and low k-mer multiplicity indicate that these assemblies do not suffer from the same assembly ambiguities of the M. lignano genome assembly, which can be attributed to the complex karyology of this species. We also show that these resources, in combination with the prior resources from M. lignano, offer an excellent foundation for comparative genomic research in this group of organisms.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Gudrun Viktorin
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Jack O Mitchell
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
4
|
Wiberg RAW, Viktorin G, Schärer L. Mating strategy predicts gene presence/absence patterns in a genus of simultaneously hermaphroditic flatworms. Evolution 2022; 76:3054-3066. [PMID: 36199200 PMCID: PMC10092323 DOI: 10.1111/evo.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023]
Abstract
Gene repertoire turnover is a characteristic of genome evolution. However, we lack well-replicated analyses of presence/absence patterns associated with different selection contexts. Here, we study ∼100 transcriptome assemblies across Macrostomum, a genus of simultaneously hermaphroditic flatworms exhibiting multiple convergent shifts in mating strategy and associated reproductive morphologies. Many species mate reciprocally, with partners donating and receiving sperm at the same time. Other species convergently evolved to mate by hypodermic injection of sperm into the partner. We find that for orthologous transcripts annotated as expressed in the body region containing the testes, sequences from hypodermically inseminating species diverge more rapidly from the model species, Macrostomum lignano, and have a lower probability of being observed in other species. For other annotation categories, simpler models with a constant rate of similarity decay with increasing genetic distance from M. lignano match the observed patterns well. Thus, faster rates of sequence evolution for hypodermically inseminating species in testis-region genes result in higher rates of homology detection failure, yielding a signal of rapid evolution in sequence presence/absence patterns. Our results highlight the utility of considering appropriate null models for unobserved genes, as well as associating patterns of gene presence/absence with replicated evolutionary events in a phylogenetic context.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland.,Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Gudrun Viktorin
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| | - Lukas Schärer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| |
Collapse
|
5
|
Jandausch K, Michels J, Kovalev A, Gorb SN, van de Kamp T, Beutel RG, Niehuis O, Pohl H. Have female twisted-wing parasites (Insecta: Strepsiptera) evolved tolerance traits as response to traumatic penetration? PeerJ 2022; 10:e13655. [PMID: 35990910 PMCID: PMC9390352 DOI: 10.7717/peerj.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Traumatic insemination describes an unusual form of mating during which a male penetrates the body wall of its female partner to inject sperm. Females unable to prevent traumatic insemination have been predicted to develop either traits of tolerance or of resistance, both reducing the fitness costs associated with the male-inflicted injury. The evolution of tolerance traits has previously been suggested for the bed bug. Here we present data suggesting that tolerance traits also evolved in females of the twisted-wing parasite species Stylops ovinae and Xenos vesparum. Using micro-indentation experiments and confocal laser scanning microscopy, we found that females of both investigated species possess a uniform resilin-rich integument that is notably thicker at penetration sites than at control sites. As the thickened cuticle does not seem to hamper penetration by males, we hypothesise that thickening of the cuticle resulted in reduced penetration damage and loss of haemolymph and in improved wound sealing. To evaluate the evolutionary relevance of the Stylops-specific paragenital organ and penis shape variation in the context of inter- and intraspecific competition, we conducted attraction and interspecific mating experiments, as well as a geometric-morphometric analysis of S. ovinae and X. vesparum penises. We found that S. ovinae females indeed attract sympatrically distributed congeneric males. However, only conspecific males were able to mate. In contrast, we did not observe any heterospecific male attraction by Xenos females. We therefore hypothesise that the paragenital organ in the genus Stylops represents a prezygotic mating barrier that prevents heterospecific matings.
Collapse
Affiliation(s)
- Kenny Jandausch
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany,Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Jan Michels
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alexander Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rolf Georg Beutel
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Hans Pohl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| |
Collapse
|
6
|
Singh P, Schärer L. Evolution of sex allocation plasticity in a hermaphroditic flatworm genus. J Evol Biol 2022; 35:817-830. [PMID: 35583959 PMCID: PMC9321609 DOI: 10.1111/jeb.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Sex allocation theory in simultaneous hermaphrodites predicts that optimal sex allocation is influenced by local sperm competition, which occurs when related sperm compete to fertilize a given set of eggs. Different factors, including the mating strategy and the ability to self‐fertilize, are predicted to affect local sperm competition and hence the optimal SA. Moreover, since the local sperm competition experienced by an individual can vary temporally and spatially, this can favour the evolution of sex allocation plasticity. Here, using seven species of the free‐living flatworm genus Macrostomum, we document interspecific variation in sex allocation, but neither their mating strategy nor their ability to self‐fertilize significantly predicted sex allocation among these species. Since we also found interspecific variation in sex allocation plasticity, we further estimated standardized effect sizes for plasticity in response to (i) the presence of mating partners (i.e. in isolation vs. with partners) and (ii) the strength of local sperm competition (i.e. in small vs. large groups). We found that self‐fertilization predicted sex allocation plasticity with respect to the presence of mating partners, with plasticity being lower for self‐fertilizing species. Finally, we showed that interspecific variation in sex allocation is higher than intraspecific variation due to sex allocation plasticity. Our study suggests that both sex allocation and sex allocation plasticity are evolutionarily labile, with self‐fertilization predicting the latter in Macrostomum.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Shi Y, Zeng Z, Wang J, Zhang S, Deng L, Wang A. Three new species of Macrostomum (Platyhelminthes, Macrostomorpha) from China and Australia, with notes on taxonomy and phylogenetics. Zookeys 2022; 1099:1-28. [PMID: 36761444 PMCID: PMC9848920 DOI: 10.3897/zookeys.1099.72964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
In this paper, three species of the macrostomid free-living flatworm genus Macrostomum are described. Two species, Macrostomumlittorale Wang & Shi, sp. nov. and M.shekouense Wang & Shi, sp. nov., were collected from coastal water at Shenzhen, Guangdong Province, China. One species, M.brandi Wang & Shi, sp. nov., was collected from Perth, Western Australia and Queenscliff, Victoria, Australia. Macrostomumlittorale sp. nov. differs from congeneric species within the genus in the length of the stylet, diameter of stylet opening, and the bend of the stylet. Macrostomumshekouense sp. nov. and M.brandi sp. nov. differ from similar species within the genus in the stylet morphology, position of the female antrum and developing eggs, or presence or absence of the false seminal vesicle. Phylogenetic analysis based on cytochrome c oxidase subunit I (COI) gene shows that M.littorale sp. nov. and M.hystrix are sister clades on two well-separated branch, M.shekouense sp. nov. and M.brandi sp. nov. are sister clades on two well-separated branches. Accordingly, both morphological and molecular evidence support M.littorale sp. nov., M.shekouense sp. nov., and M.brandi sp. nov. as three new species.
Collapse
Affiliation(s)
- Yongshi Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Zhiyu Zeng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Jia Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Siyu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Antai Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| |
Collapse
|
8
|
Brand JN, Harmon LJ, Schärer L. Mating behavior and reproductive morphology predict macroevolution of sex allocation in hermaphroditic flatworms. BMC Biol 2022; 20:35. [PMID: 35130880 PMCID: PMC8822660 DOI: 10.1186/s12915-022-01234-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sex allocation is the distribution of resources to male or female reproduction. In hermaphrodites, this concerns an individual’s resource allocation to, for example, the production of male or female gametes. Macroevolutionary studies across hermaphroditic plants have revealed that the self-pollination rate and the pollination mode are strong predictors of sex allocation. Consequently, we expect similar factors such as the selfing rate and aspects of the reproductive biology, like the mating behaviour and the intensity of postcopulatory sexual selection, to predict sex allocation in hermaphroditic animals. However, comparative work on hermaphroditic animals is limited. Here, we study sex allocation in 120 species of the hermaphroditic free-living flatworm genus Macrostomum. We ask how hypodermic insemination, a convergently evolved mating behaviour where sperm are traumatically injected through the partner’s epidermis, affects the evolution of sex allocation. We also test the commonly-made assumption that investment into male and female reproduction should trade-off. Finally, we ask if morphological indicators of the intensity of postcopulatory sexual selection (female genital complexity, male copulatory organ length, and sperm length) can predict sex allocation. Results We find that the repeated evolution of hypodermic insemination predicts a more female-biased sex allocation (i.e., a relative shift towards female allocation). Moreover, transcriptome-based estimates of heterozygosity reveal reduced heterozygosity in hypodermically mating species, indicating that this mating behavior is linked to increased selfing or biparental inbreeding. Therefore, hypodermic insemination could represent a selfing syndrome. Furthermore, across the genus, allocation to male and female gametes is negatively related, and larger species have a more female-biased sex allocation. Finally, increased female genital complexity, longer sperm, and a longer male copulatory organ predict a more male-biased sex allocation. Conclusions Selfing syndromes have repeatedly originated in plants. Remarkably, this macroevolutionary pattern is replicated in Macrostomum flatworms and linked to repeated shifts in reproductive behavior. We also find a trade-off between male and female reproduction, a fundamental assumption of most theories of sex allocation. Beyond that, no theory predicts a more female-biased allocation in larger species, suggesting avenues for future work. Finally, morphological indicators of more intense postcopulatory sexual selection appear to predict more intense sperm competition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01234-1.
Collapse
Affiliation(s)
- Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Luke J Harmon
- Department of Biological Sciences, University of Idaho, Life Sciences South 252, 875 Perimeter Dr MS 3051, Moscow, ID, USA
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|