1
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
2
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
3
|
Ferrão MAG, da Fonseca AFA, Volpi PS, de Souza LC, Comério M, Filho ACV, Riva-Souza EM, Munoz PR, Ferrão RG, Ferrão LFV. Genomic-assisted breeding for climate-smart coffee. THE PLANT GENOME 2024; 17:e20321. [PMID: 36946358 DOI: 10.1002/tpg2.20321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Coffee is a universal beverage that drives a multi-industry market on a global basis. Today, the sustainability of coffee production is threatened by accelerated climate changes. In this work, we propose the implementation of genomic-assisted breeding for climate-smart coffee in Coffea canephora. This species is adapted to higher temperatures and is more resilient to biotic and abiotic stresses. After evaluating two populations, over multiple harvests, and under severe drought weather condition, we dissected the genetic architecture of yield, disease resistance, and quality-related traits. By integrating genome-wide association studies and diallel analyses, our contribution is four-fold: (i) we identified a set of molecular markers with major effects associated with disease resistance and post-harvest traits, while yield and plant architecture presented a polygenic background; (ii) we demonstrated the relevance of nonadditive gene actions and projected hybrid vigor when genotypes from different geographically botanical groups are crossed; (iii) we computed medium-to-large heritability values for most of the traits, representing potential for fast genetic progress; and (iv) we provided a first step toward implementing molecular breeding to accelerate improvements in C. canephora. Altogether, this work is a blueprint for how quantitative genetics and genomics can assist coffee breeding and support the supply chain in the face of the current global changes.
Collapse
Affiliation(s)
- Maria Amélia G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Aymbire F A da Fonseca
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Paulo S Volpi
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Lucimara C de Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Marcone Comério
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Abraão C Verdin Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Elaine M Riva-Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Patricio R Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Romário G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Multivix Group, ES, Brazil
| | - Luís Felipe V Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Mol Ecol 2023; 32:1972-1989. [PMID: 36704917 DOI: 10.1111/mec.16865] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Genomes retain evidence of the demographic history and evolutionary forces that have shaped populations and drive speciation. Across island systems, contemporary patterns of genetic diversity reflect population demography, including colonization events, bottlenecks, gene flow and genetic drift. Here, we investigate genome-wide diversity and the distribution of runs of homozygosity (ROH) using whole-genome resequencing of individuals (>22× coverage) from six populations across three archipelagos of Berthelot's pipit (Anthus berthelotii)-a passerine that has recently undergone island speciation. We show the most dramatic reduction in diversity occurs between the mainland sister species (the tawny pipit) and Berthelot's pipit and is lowest in the populations that have experienced sequential bottlenecks (i.e., the Madeiran and Selvagens populations). Pairwise sequential Markovian coalescent (PSMC) analyses estimated that Berthelot's pipit diverged from its sister species ~2 million years ago, with the Madeiran archipelago founded 50,000 years ago, and the Selvagens colonized 8000 years ago. We identify many long ROH (>1 Mb) in these most recently colonized populations. Population expansion within the last 100 years may have eroded long ROH in the Madeiran archipelago, resulting in a prevalence of short ROH (<1 Mb). However, the extensive long and short ROH detected in the Selvagens suggest strong recent inbreeding and bottleneck effects, with as much as 38% of the autosomes consisting of ROH >250 kb. These findings highlight the importance of demographic history, as well as selection and genetic drift, in shaping contemporary patterns of genomic diversity across diverging populations.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | | | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
5
|
Eliason CM, Hains T, McCullough J, Andersen MJ, Hackett SJ. Genomic novelty within a "great speciator" revealed by a high-quality reference genome of the collared kingfisher (Todiramphus chloris collaris). G3 (BETHESDA, MD.) 2022; 12:jkac260. [PMID: 36156134 PMCID: PMC9635628 DOI: 10.1093/g3journal/jkac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Islands are natural laboratories for studying patterns and processes of evolution. Research on island endemic birds has revealed elevated speciation rates and rapid phenotypic evolution in several groups (e.g. white-eyes, Darwin's finches). However, understanding the evolutionary processes behind these patterns requires an understanding of how genotypes map to novel phenotypes. To date, there are few high-quality reference genomes for species found on islands. Here, we sequence the genome of one of Ernst Mayr's "great speciators," the collared kingfisher (Todiramphus chloris collaris). Utilizing high molecular weight DNA and linked-read sequencing technology, we assembled a draft high-quality genome with highly contiguous scaffolds (scaffold N50 = 19 Mb). Based on universal single-copy orthologs, we estimated a gene space completeness of 96.6% for the draft genome assembly. The population demographic history analyses reveal a distinct pattern of contraction and expansion in population size throughout the Pleistocene. Comparative genomic analysis of gene family evolution revealed that species-specific and rapidly expanding gene families in the collared kingfisher (relative to other Coraciiformes) are mainly involved in the ErbB signaling pathway and focal adhesion. Todiramphus kingfishers are a species-rich group that has become a focus of speciation research. This draft genome will be a platform for future taxonomic, phylogeographic, and speciation research in the group. For example, target genes will enable testing of changes in sensory structures associated with changes in vision and taste genes across kingfishers.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Taylor Hains
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jenna McCullough
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Andersen
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Wiens BJ, Combe FJ, Dickerson B, Divine LM, Padula VM, Sage GK, Talbot SL, Hope AG. Genetic drift drives rapid speciation of an Arctic insular endemic shrew (Sorex pribilofensis). Mol Ecol 2022; 31:5231-5248. [PMID: 35972323 DOI: 10.1111/mec.16658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Episodes of Quaternary environmental change shaped the genomes of extant species, influencing their response to contemporary environments, which are changing rapidly. Island endemics are among the most vulnerable to such change, accounting for a disproportionate number of recent extinctions. To prevent extinctions and conserve island biodiversity it is vital to combine knowledge of species' ecologies with their complex evolutionary histories. The Bering Sea has a history of cyclical island isolation and reconnection, coupled with modern rates of climate change that exceed global averages. The endangered Pribilof Island shrew (Sorex pribilofensis) is endemic to St. Paul Island, Alaska, which was isolated from mainland Beringia ~14,000 years ago by rising sea levels. Using ~11,000 single nucleotide polymorphisms, 17 microsatellites and mitochondrial sequence data, we test predictions about the evolutionary processes driving shrew speciation across Beringia. Our data show considerable differentiation of S. pribilofensis from mainland sibling species, relative to levels of divergence between mainland shrews. We also find a genome-wide loss of diversity and extremely low Ne for S. pribilofensis. We then show that intraspecific genetic diversity is significantly related to interspecific divergence, and that differentiation between S. pribilofensis and other Beringian shrews is highest across loci that are fixed in S. pribilofensis, indicating that strong drift has driven differentiation of this island species. Our findings show that drift as a consequence of Arctic climate cycling can rapidly reshape insular biodiversity. Arctic island species that lack genomic diversity and have evolved in response to past climate may have limited ability to respond to modern environmental changes.
Collapse
Affiliation(s)
- Ben J Wiens
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Fraser J Combe
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | - Lauren M Divine
- Aleut Community of St. Paul Island, Ecosystem Conservation Office, St. Paul, Alaska, USA
| | - Veronica M Padula
- Aleut Community of St. Paul Island, Ecosystem Conservation Office, St. Paul, Alaska, USA
| | - George K Sage
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Sandra L Talbot
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Andrew G Hope
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
7
|
LeBlanc NM, Pavey SA. Comparing mixed models and Random Forest association tests using naturalGWAS and a Striped Bass SNP dataset. Mol Ecol Resour 2022; 23:145-158. [PMID: 35980658 DOI: 10.1111/1755-0998.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
In this study, we used the phenotype simulation package naturalGWAS to test the performance of Zhao's Random Forest method in comparison to an uncorrected Random Forest test, latent factor mixed models (LFMM), genome-wide efficient mixed models (GEMMA), and confounder adjusted linear regression (CATE). We created 400 sets of phenotypes, corresponding to five effect sizes and 2, 5, 15, or 30 causal loci, simulated from two empirical datasets containing SNPs from Striped Bass representing three and 13 populations. All association methods were evaluated for their ability to detect genotype-phenotype associations based on power, false discovery rates, and number of false positives. Genomic inflation was highest for uncorrected Random Forest and LFMM tests and lowest for Gemma and Zhao's Random Forest. All association tests had similar power to detect causal loci, and Zhao's Random Forest had the lowest false discovery rate in all scenarios. To measure the performance of association tests in small datasets with few loci surrounding a causal gene we also ran analyses again after removing causal loci from each dataset. All association tests were only able to find true positives, defined as loci located within 30k bp of a causal locus, in 3%-18% of simulations. In contrast, at least one false positive was found in 17%-44% of simulations. Zhao's Random Forest again identified the fewest false positives of all association tests studied. The ability to test the power of association tests for individual empirical datasets can be an extremely useful first step when designing a GWAS study.
Collapse
Affiliation(s)
- Nathalie M LeBlanc
- Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | - Scott A Pavey
- Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| |
Collapse
|
8
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic associations with poxvirus across divergent island populations in Berthelot's pipit. Mol Ecol 2022; 31:3154-3173. [PMID: 35395699 PMCID: PMC9321574 DOI: 10.1111/mec.16461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms and genes that enable animal populations to adapt to pathogens is important from an evolutionary, health and conservation perspective. Berthelot's pipit (Anthus berthelotii) experiences extensive and consistent spatial heterogeneity in avian pox infection pressure across its range of island populations, thus providing an excellent system with which to examine how pathogen-mediated selection drives spatial variation in immunogenetic diversity. Here we test for evidence of genetic variation associated with avian pox at both an individual and population-level. At the individual level, we find no evidence that variation in MHC class I and TLR4 (both known to be important in recognising viral infection) was associated with pox infection within two separate populations. However, using genotype-environment association (Bayenv) in conjunction with genome-wide (ddRAD-seq) data, we detected strong associations between population-level avian pox prevalence and allele frequencies of single nucleotide polymorphisms (SNPs) at a number of sites across the genome. These sites were located within genes involved in cellular stress signalling and immune responses, many of which have previously been associated with responses to viral infection in humans and other animals. Consequently, our analyses indicates that pathogen-mediated selection may play a role in shaping genomic variation among relatively recently colonised island bird populations and highlights the utility of genotype-environment associations for identifying candidate genes potentially involved in host-pathogen interactions.
Collapse
Affiliation(s)
- Eleanor C Sheppard
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| |
Collapse
|
9
|
Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM. An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 2021; 30:2495-2510. [PMID: 33826187 DOI: 10.1111/mec.15898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
When populations colonize new areas, both strong selection and strong drift can be experienced due to novel environments and small founding populations, respectively. Empirical studies have predominantly focused on the phenotype when assessing the role of selection, and limited neutral-loci when assessing founder-induced loss of diversity. Consequently, the extent to which processes interact to influence evolutionary trajectories is difficult to assess. Genomic-level approaches provide the opportunity to simultaneously consider these processes. Here, we examine the roles of selection and drift in shaping genomic diversity and divergence in historically documented sequential island colonizations by the silvereye (Zosterops lateralis). We provide the first empirical demonstration of the rapid appearance of highly diverged genomic regions following population founding, the position of which are highly idiosyncratic. As these regions rarely contained loci putatively under selection, it is most likely that these differences arise via the stochastic nature of the founding process. However, selection is required to explain rapid evolution of larger body size in insular silvereyes. Reconciling our genomic data with these phenotypic patterns suggests there may be many genomic routes to the island phenotype, which vary across populations. Finally, we show that accelerated divergence associated with multiple founding steps is the product of genome-wide rather than localized differences, and that diversity erodes due to loss of rare alleles. However, even multiple founder events do not result in divergence and diversity levels seen in evolutionary older subspecies, and therefore do not provide a shortcut to speciation as proposed by founder-effect speciation models.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Kristen C Ruegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
10
|
Qi GA, Zheng YT, Lin F, Huang X, Duan LW, You Y, Liu H, Wang Y, Xu HM, Chen GB. EigenGWAS: An online visualizing and interactive application for detecting genomic signatures of natural selection. Mol Ecol Resour 2021; 21:1732-1744. [PMID: 33665976 DOI: 10.1111/1755-0998.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
Detecting genetic regions under selection in structured populations is of great importance in ecology, evolutionary biology and breeding programmes. We recently proposed EigenGWAS, an unsupervised genomic scanning approach that is similar to F ST but does not require grouping information of the population, for detection of genomic regions under selection. The original EigenGWAS is designed for the random mating population, and here we extend its use to inbred populations. We also show in theory and simulation that eigenvalues, the previous corrector for genetic drift in EigenGWAS, are overcorrected for genetic drift, and the genomic inflation factor is a better option for this adjustment. Applying the updated algorithm, we introduce the new EigenGWAS online platform with highly efficient core implementation. Our online computational tool accepts plink data in a standard binary format that can be easily converted from the original sequencing data, provides the users with graphical results via the R-Shiny user-friendly interface. We applied the proposed method and tool to various data sets, and biologically interpretable results as well as caveats that may lead to an unsatisfactory outcome are given. The EigenGWAS online platform is available at www.eigengwas.com, and can be localized and scaled up via R (recommended) or docker.
Collapse
Affiliation(s)
- Guo-An Qi
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuan-Ting Zheng
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feng Lin
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Huang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li-Wen Duan
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue You
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hailan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hai-Ming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guo-Bo Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Bassitta M, Brown RP, Pérez-Cembranos A, Pérez-Mellado V, Castro JA, Picornell A, Ramon C. Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard. Sci Rep 2021; 11:6136. [PMID: 33731784 PMCID: PMC7971075 DOI: 10.1038/s41598-021-85591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 01/27/2023] Open
Abstract
Genomic divergence was studied in 10 small insular populations of the endangered Balearic Islands lizard (Podarcis lilfordi) using double digest restriction-site associated DNA sequencing. The objectives were to establish levels of divergence among populations, investigate the impact of population size on genetic variability and to evaluate the role of different environmental factors on local adaptation. Analyses of 72,846 SNPs supported a highly differentiated genetic structure, being the populations with the lowest population size (Porros, Foradada and Esclatasang islets) the most divergent, indicative of greater genetic drift. Outlier tests identified ~ 2% of loci as candidates for selection. Genomic divergence-Enviroment Association analyses were performed using redundancy analyses based on SNPs putatively under selection, detecting predation and human pressure as the environmental variables with the greatest explanatory power. Geographical distributions of populations and environmental factors appear to be fundamental drivers of divergence. These results support the combined role of genetic drift and divergent selection in shaping the genetic structure of these endemic island lizard populations.
Collapse
Affiliation(s)
- Marta Bassitta
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain.
| | - Richard P Brown
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ana Pérez-Cembranos
- Departamento de Biología Animal, Edificio de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Valentín Pérez-Mellado
- Departamento de Biología Animal, Edificio de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - José A Castro
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| | - Antònia Picornell
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| | - Cori Ramon
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
12
|
Martin CA, Armstrong C, Illera JC, Emerson BC, Richardson DS, Spurgin LG. Genomic variation, population history and within-archipelago adaptation between island bird populations. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201146. [PMID: 33972847 PMCID: PMC8074581 DOI: 10.1098/rsos.201146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 05/13/2023]
Abstract
Oceanic island archipelagos provide excellent models to understand evolutionary processes. Colonization events and gene flow can interact with selection to shape genetic variation at different spatial scales. Landscape-scale variation in biotic and abiotic factors may drive fine-scale selection within islands, while long-term evolutionary processes may drive divergence between distantly related populations. Here, we examine patterns of population history and selection between recently diverged populations of the Berthelot's pipit (Anthus berthelotii), a passerine endemic to three North Atlantic archipelagos. First, we use demographic trees and f3 statistics to show that genome-wide divergence across the species range is largely shaped by colonization and bottlenecks, with evidence of very weak gene flow between populations. Then, using a genome scan approach, we identify signatures of divergent selection within archipelagos at single nucleotide polymorphisms (SNPs) in genes potentially associated with craniofacial development and DNA repair. We did not detect within-archipelago selection at the same SNPs as were detected previously at broader spatial scales between archipelagos, but did identify signatures of selection at loci associated with similar biological functions. These findings suggest that similar ecological factors may repeatedly drive selection between recently separated populations, as well as at broad spatial scales across varied landscapes.
Collapse
Affiliation(s)
- Claudia A. Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Juan Carlos Illera
- Oviedo University, Campus of Mieres, Research Unit of Biodiversity (UO-CSIC-PA), Research Building, 5th floor, c/Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - David S. Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Lewis G. Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
13
|
Andrade P, Cataldo D, Fontaine R, Rodrigues TM, Queirós J, Neves V, Fonseca A, Carneiro M, Gonçalves D. Selection underlies phenotypic divergence in the insular Azores woodpigeon. ZOOL SCR 2020. [DOI: 10.1111/zsc.12456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pedro Andrade
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Daniele Cataldo
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Rémi Fontaine
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Tiago M. Rodrigues
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
- Direção Regional dos Recursos Florestais (DRRF) Azores Portugal
| | - João Queirós
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Verónica Neves
- MARE, Marine & Environmental Sciences Centre Institute of Marine Research (IMAR) OKEANOS R&D Center Faculdade de Ciências e Tecnologia Universidade dos Açores Horta Portugal
| | - Amélia Fonseca
- Departamento de Biologia Faculdade de Ciências e Tecnologia Universidade dos Açores Azores Portugal
| | - Miguel Carneiro
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - David Gonçalves
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| |
Collapse
|
14
|
The roles of vicariance and isolation by distance in shaping biotic diversification across an ancient archipelago: evidence from a Seychelles caecilian amphibian. BMC Evol Biol 2020; 20:110. [PMID: 32847507 PMCID: PMC7448330 DOI: 10.1186/s12862-020-01673-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background Island systems offer excellent opportunities for studying the evolutionary histories of species by virtue of their restricted size and easily identifiable barriers to gene flow. However, most studies investigating evolutionary patterns and processes shaping biotic diversification have focused on more recent (emergent) rather than ancient oceanic archipelagos. Here, we focus on the granitic islands of the Seychelles, which are unusual among island systems because they have been isolated for a long time and are home to a monophyletic radiation of caecilian amphibians that has been separated from its extant sister lineage for ca. 65–62 Ma. We selected the most widespread Seychelles caecilian species, Hypogeophis rostratus, to investigate intraspecific morphological and genetic (mitochondrial and nuclear) variation across the archipelago (782 samples from nine islands) to identify patterns and test processes that shaped their evolutionary history within the Seychelles. Results Overall a signal of strong geographic structuring with distinct northern- and southern-island clusters were identified across all datasets. We suggest that these distinct groups have been isolated for ca. 1.26 Ma years without subsequent migration between them. Populations from the somewhat geographically isolated island of Frégate showed contrasting relationships to other islands based on genetic and morphological data, clustering alternatively with northern-island (genetic) and southern-island (morphological) populations. Conclusions Although variation in H. rostratus across the Seychelles is explained more by isolation-by-distance than by adaptation, the genetic-morphological incongruence for affinities of Frégate H. rostratus might be caused by local adaptation over-riding the signal from their vicariant history. Our findings highlight the need of integrative approaches to investigate fine-scale geographic structuring to uncover underlying diversity and to better understand evolutionary processes on ancient, continental islands.
Collapse
|
15
|
Sendell-Price AT, Ruegg KC, Clegg SM. Rapid morphological divergence following a human-mediated introduction: the role of drift and directional selection. Heredity (Edinb) 2020; 124:535-549. [PMID: 32080374 PMCID: PMC7080774 DOI: 10.1038/s41437-020-0298-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/25/2023] Open
Abstract
Theory predicts that when populations are established by few individuals, random founder effects can facilitate rapid phenotypic divergence even in the absence of selective processes. However, empirical evidence from historically documented colonisations suggest that, in most cases, drift alone is not sufficient to explain the rate of morphological divergence. Here, using the human-mediated introduction of the silvereye (Zosterops lateralis) to French Polynesia, which represents a potentially extreme example of population founding, we reassess the potential for morphological shifts to arise via drift alone. Despite only 80 years of separation from their New Zealand ancestors, French Polynesian silvereyes displayed significant changes in body and bill size and shape, most of which could be accounted for by drift, without the need to invoke selection. However, signatures of selection at genes previously identified as candidates for bill size and body shape differences in a range of bird species, also suggests a role for selective processes in driving morphological shifts within this population. Twenty-four SNPs in our RAD-Seq dataset were also found to be strongly associated with phenotypic variation. Hence, even under population founding extremes, when it is difficult to reject drift as the sole mechanism based on rate tests of phenotypic shifts, the additional role of divergent natural selection in novel environments can be revealed at the level of the genome.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Zoology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Kristen C Ruegg
- Department of Zoology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, OX1 3PS, UK
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonya M Clegg
- Department of Zoology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, OX1 3PS, UK
- Environmental Futures Research Institute, Griffith University, Queensland, 4111, Australia
| |
Collapse
|
16
|
Michailidou S, Tsangaris GT, Tzora A, Skoufos I, Banos G, Argiriou A, Arsenos G. Analysis of genome-wide DNA arrays reveals the genomic population structure and diversity in autochthonous Greek goat breeds. PLoS One 2019; 14:e0226179. [PMID: 31830089 PMCID: PMC6907847 DOI: 10.1371/journal.pone.0226179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
Goats play an important role in the livestock sector in Greece. The national herd consists mainly of two indigenous breeds, the Eghoria and Skopelos. Here, we report the population structure and genomic profiles of these two native goat breeds using Illumina’s Goat SNP50 BeadChip. Moreover, we present a panel of candidate markers acquired using different genetic models for breed discrimination. Quality control on the initial dataset resulted in 48,841 SNPs kept for downstream analysis. Principal component and admixture analyses were applied to assess population structure. The rate of inbreeding within breed was evaluated based on the distribution of runs of homozygosity in the genome and respective coefficients, the genomic relationship matrix, the patterns of linkage disequilibrium, and the historic effective population size. Results showed that both breeds exhibit high levels of genetic diversity. Level of inbreeding between the two breeds estimated by the Wright’s fixation index FST was low (Fst = 0.04362), indicating the existence of a weak genetic differentiation between them. In addition, grouping of farms according to their geographical locations was observed. This study presents for the first time a genome-based analysis on the genetic structure of the two indigenous Greek goat breeds and identifies markers that can be potentially exploited in future selective breeding programs for traceability purposes, targeted genetic improvement schemes and conservation strategies.
Collapse
Affiliation(s)
- S. Michailidou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
- * E-mail:
| | - G. Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - A. Tzora
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - I. Skoufos
- School of Agriculture, Department of Agriculture, Division of Animal Production, University of Ioannina, Kostakioi Artas, Greece
| | - G. Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland's Rural College and The Roslin Institute University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - A. Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thermi, Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
18
|
Johnsson M. Integrating Selection Mapping With Genetic Mapping and Functional Genomics. Front Genet 2018; 9:603. [PMID: 30619447 PMCID: PMC6295561 DOI: 10.3389/fgene.2018.00603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Genomic scans for signatures of selection allow us to, in principle, detect variants and genes that underlie recent adaptations. By combining selection mapping with genetic mapping of traits known to be relevant to adaptation, we can simultaneously investigate whether genes and variants show signals of recent selection and whether they impact traits that have likely been selected. There are three ways to integrate selection mapping with genetic mapping or functional genomics: (1) To use genetic mapping data from other populations as a form of genome annotation. (2) To perform experimental evolution or artificial selection to be able to study selected variants when they segregate, either by performing genetic mapping before selection or by crossing the selected individuals to some reference population. (3) To perform a comparative study of related populations facing different selection regimes. This short review discusses these different ways of integrating selection mapping with genetic mapping and functional genomics, with examples of how each has been done.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|