1
|
Ehemann N, Franchini P, Meyer A, Hulsey CD. Meristic co-evolution and genomic co-localization of lateral line scales and vertebrae in Central American cichlid fishes. Ecol Evol 2024; 14:e70266. [PMID: 39279804 PMCID: PMC11402520 DOI: 10.1002/ece3.70266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Meristic traits are often treated as distinct phenotypes that can be used to differentiate and delineate recently diverged species. For instance, the number of lateral line scales and vertebrae, two traits that vary substantially among Neotropical Heroine cichlid species, have been previously suggested to co-evolve. These meristic traits could co-evolve due to shared adaptive, developmental, or genetic factors. If they were found to be genetically or developmentally non-independent, this might require a more general re-evaluation of their role in evolutionary or taxonomic studies. We expanded a previous analysis of correlated evolution of meristic traits (lateral line scales and vertebrae counts) in these fishes to include a range of phylogenetic reconstructions as well as the analyses of 13 Nicaraguan Midas cichlid species (Amphilophus spp.). Additionally, we performed qualitative traits locus (QTL) mapping in a F2 laboratory-reared hybrid population from two ecologically divergent Midas cichlid fish species to discover and evaluate whether genomic co-segregation might explain the observed patterns of meristic co-evolution. Meristic values for these traits were found to morphologically differentiate some species of the Midas cichlid adaptive radiation. Our QTL analysis pinpointed several genomic regions associated with divergence in these traits and highlighted the potential for genomic co-segregation of the lateral line and vertebrae numbers on two chromosomes. Further, our phylogenetic comparative analyses consistently recovered a significant positive evolutionary correlation between the counts of lateral line scale and vertebrae numbers in Neotropical cichlids. Hence, the findings of genomic co-segregation could partially explain the co-evolution of these two meristic traits in these species. Continuing to unravel the genetic architecture governing meristic divergence helps to better understand both trait correlations and the utility of meristic traits in taxonomic diagnoses and how traits in phenotypes might be expected to co-evolve.
Collapse
Affiliation(s)
| | - Paolo Franchini
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| |
Collapse
|
2
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
3
|
Fournier CS, McPhee S, Amboko JD, Detwiler KM. Camera Traps Uncover the Behavioral Ecology of an Endemic, Cryptic Monkey Species in the Congo Basin. Animals (Basel) 2023; 13:1819. [PMID: 37889712 PMCID: PMC10252051 DOI: 10.3390/ani13111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 10/29/2023] Open
Abstract
Guenons are the most diverse clade of African primates, and many species living within the core of the Congo Basin rainforest are still understudied. The recently described guenon species, Cercopithecus lomamiensis, known as lesula, is a cryptic, semi-terrestrial species endemic to the central Congo Basin in the Democratic Republic of the Congo. The recent IUCN Red List Assessment recognizes lesula's risk of extinction in the wild as Vulnerable. The objective of our study was to use camera traps to expand knowledge on the behavioral ecology of lesula. We conducted three systematic, terrestrial camera trap (CT) surveys within Lomami National Park and buffer zone (Okulu: 2013; Losekola: 2014; E15: 2015). We accumulated 598 independent events of lesula over 5960 CT days from 92 CTs. Typical of Cercopithecus species, camera trap videos reveal that lesula has a diurnal activity pattern, birth seasonality, a group size of up to 32 individuals, and social organization with female philopatry and male dispersal. Results also suggest that lesula are highly terrestrial, distinguishing them from other Cercopithecus species, which are mostly arboreal. Our study provides new information about the behavioral ecology of this little-studied primate, generating species-specific knowledge of a threatened species for successful conservation planning.
Collapse
Affiliation(s)
- Charlene S. Fournier
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Steven McPhee
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Junior D. Amboko
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Kate M. Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
4
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
5
|
Karagic N, Härer A, Meyer A, Torres-Dowdall J. Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish. Evolution 2022; 76:837-845. [PMID: 35247267 DOI: 10.1111/evo.14455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/05/2022] [Indexed: 01/21/2023]
Abstract
Vision is critical for most vertebrates, including fish. One challenge that aquatic habitats pose is the high variability in spectral properties depending on depth and the inherent optical properties of the water. By altering opsin gene expression and chromophore usage, cichlid fish modulate visual sensitivities to maximize sensory input from the available light in their respective habitat. Thyroid hormone (TH) has been proposed to play a role in governing adaptive diversification in visual sensitivity in Nicaraguan Midas cichlids, which evolved in less than 4000 generations. As suggested by indirect measurements of TH levels (i.e., expression of deiodinases), populations adapted to short wavelength light in clear lakes have lower TH levels than ones inhabiting turbid lakes enriched in long-wavelength light. We experimentally manipulated TH levels by exposing 2-week-old Midas cichlids to exogenous TH or a TH inhibitor and measured opsin gene expression and chromophore usage (via cyp27c1 expression). Although exogenous TH induces long-wavelength sensitivity by changing opsin gene expression and chromophore usage in a concerted manner, TH-inhibited fish exhibit a visual phenotype with sensitivities shifted to shorter wavelengths. Tinkering with TH levels in eyes results in concerted phenotypic changes that can provide a rapid mechanism of adaptation to novel light environments.
Collapse
Affiliation(s)
- Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Division of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | | |
Collapse
|
6
|
The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host-parasite diversification and speciation. Sci Rep 2022; 12:3944. [PMID: 35273219 PMCID: PMC8913791 DOI: 10.1038/s41598-022-07647-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/15/2022] [Indexed: 01/28/2023] Open
Abstract
The Nicaraguan lakes represent an ideal continent-island-like setting to study the colonization patterns of both fish and their parasites. The dominant fish fauna are cichlids, particularly the Midas cichlid species complex Amphilophus spp., a well-studied model for recent sympatric speciation. Here, we characterized the Midas cichlid macroparasite diversity in Nicaraguan lakes. We evaluated patterns of parasite diversity across host populations. Morphological and molecular analyses were conducted, revealing a macroparasite fauna composed by 37 taxa, including platyhelminths, nematodes, copepods, branchiurans, hirudineans and oribatids. Three invasive species are reported for the first time. The Midas cichlid was infected by 22 parasite taxa, 18 shared with other cichlids. Eight taxa conformed the core parasite fauna of the Midas cichlid. The large lakes had higher parasite diversity than the smaller and isolated crater lakes, although parasite infracommunity diversity was lower. Environmental factors along with the differential distribution of intermediate hosts, the potential resistance gained by their hosts after colonization of new lakes, competitive exclusion among parasites, or the introduction of exotic fish, may determine the observed pattern of parasite heterogeneous distribution. Our study provides a ground to explore the evolutionary history of both, hosts and parasites within the context of speciation and diversification processes.
Collapse
|
7
|
Kratochwil CF, Kautt AF, Rometsch SJ, Meyer A. Benefits and limitations of a new genome-based PCR-RFLP genotyping assay (GB-RFLP): A SNP-based detection method for identification of species in extremely young adaptive radiations. Ecol Evol 2022; 12:e8751. [PMID: 35356554 PMCID: PMC8941502 DOI: 10.1002/ece3.8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
High-throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole-genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost-prohibitive, too time-consuming, and often constitute a "data overkill." Rapid and reliable identification of species (and populations) that is also cost-effective is made possible by species-specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR-RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available "high resolution" genomic information. Yet, our work also shows that even in the best-case scenario, when whole-genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.
Collapse
Affiliation(s)
- Claudius F. Kratochwil
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Present address:
Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Andreas F. Kautt
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Sina J. Rometsch
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
8
|
Rometsch SJ, Torres‐Dowdall J, Machado‐Schiaffino G, Karagic N, Meyer A. Dual function and associated costs of a highly exaggerated trait in a cichlid fish. Ecol Evol 2021; 11:17496-17508. [PMID: 34938524 PMCID: PMC8668731 DOI: 10.1002/ece3.8383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
Exaggerated secondary sexual characteristics are apparently costly and seem to defy natural selection. This conundrum promoted the theory of sexual selection. Accordingly, exaggerated secondary sexual characteristics might be ornaments on which female choice is based and/or armaments used during male-male competition. Males of many cichlid fish species, including the adaptive radiation of Nicaraguan Midas cichlids, develop a highly exaggerated nuchal hump, which is thought to be a sexually selected trait. To test this hypothesis, we conducted a series of behavioral assays in F2 hybrids obtained from crossing a species with a relatively small hump and one with an exaggerated hump. Mate-choice experiments showed a clear female preference for males with large humps. In an open-choice experiment with limited territories, couples including large humped males were more successful in acquiring these territories. Therefore, nuchal humps appear to serve dual functions as an ornament for attracting mates and as an armament for direct contest with rivals. Although being beneficial in terms of sexual selection, this trait also imposes fitness costs on males possessing disproportionally large nuchal humps since they exhibit decreased endurance and increased energetic costs when swimming. We conclude that these costs illustrate trade-offs associated with large hump size between sexual and natural selection, which causes the latter to limit further exaggeration of this spectacular male trait.
Collapse
Affiliation(s)
- Sina J. Rometsch
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Julián Torres‐Dowdall
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Gonzalo Machado‐Schiaffino
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Present address:
Department of Functional BiologyUniversity of OviedoOviedoSpain
| | - Nidal Karagic
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Axel Meyer
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
9
|
Levin B, Simonov E, Franchini P, Mugue N, Golubtsov A, Meyer A. Rapid adaptive radiation in a hillstream cyprinid fish in the East African White Nile River basin. Mol Ecol 2021; 30:5530-5550. [PMID: 34409661 DOI: 10.1111/mec.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
Adaptive radiation of freshwater fishes was long thought to be possible only in lacustrine environments. Recently, several studies have shown that riverine and stream environments also provide the ecological opportunity for adaptive radiation. In this study, we report on a riverine adaptive radiation of six ecomorphs of cyprinid hillstream fishes of the genus Garra in a river located in the Ethiopian Highlands in East Africa. Garra are predominantly highly specialized algae-scrapers with a wide distribution ranging from Southeast Asia to West Africa. However, adaptive phenotypic diversification in mouth type, sucking disc morphology, gut length and body shape have probably been found among these ecomorphs in a single Ethiopian river. Moreover, we found two novel phenotypes of Garra ("thick-lipped" and "predatory") that had not been discovered before in this species-rich genus (>160 species). Mitochondrial and genome-wide data suggest monophyletic, intrabasin evolution of Garra phenotypic diversity with signatures of gene flow from other local populations. Although sympatric ecomorphs are genetically distinct and can be considered to being young species as suggested by genome-wide single nucleotide polymorphism data, mitochondrial DNA was unable to identify any genetic structure suggesting recent and rapid speciation events. Some data suggest a hybrid origin of the novel "thick-lipped" ecomorph. Here we highlight how, driven by ecological opportunity, an ancestral trophically highly specialized lineage is likely to have rapidly radiated in a riverine environment promoted by the evolution of novel feeding strategies.
Collapse
Affiliation(s)
- Boris Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia.,Zoological Institute of Russian Academy of Sciences, Cherepovets State University, St. Petersburg, Russia
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, Russia
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nikolai Mugue
- Koltzov Institute for Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
11
|
Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol Ecol 2021; 30:955-972. [PMID: 33305470 PMCID: PMC8607476 DOI: 10.1111/mec.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.
Collapse
Affiliation(s)
- Peiwen Xiong
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Carmelo Fruciano
- Department of BiologyUniversity of KonstanzKonstanzGermany
- National Research Council (CNR) – IRBIMMessinaItaly
| | - Wai Y. Wong
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | | | - Andreas F. Kautt
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Oleg Simakov
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | |
Collapse
|
12
|
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A. Contrasting signatures of genomic divergence during sympatric speciation. Nature 2020; 588:106-111. [PMID: 33116308 PMCID: PMC7759464 DOI: 10.1038/s41586-020-2845-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain
| | - Melisa Olave
- Department of Biology, University of Konstanz, Konstanz, Germany
- Argentine Dryland Research Institute of the National Council for Scientific Research (IADIZA-CONICET), Mendoza, Argentina
| | - Frederico Henning
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Division of Biological Sciences, Section of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
13
|
Svardal H, Salzburger W, Malinsky M. Genetic Variation and Hybridization in Evolutionary Radiations of Cichlid Fishes. Annu Rev Anim Biosci 2020; 9:55-79. [PMID: 33197206 DOI: 10.1146/annurev-animal-061220-023129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary radiations are responsible for much of the variation in biodiversity across taxa. Cichlid fishes are well known for spectacular evolutionary radiations, as they have repeatedly evolved into large and phenotypically diverse arrays of species. Cichlid genomes carry signatures of past events and, at the same time, are the substrate for ongoing evolution. We survey genome-wide data and the available literature covering 438 cichlid populations (412 species) across multiple radiations to synthesize information about patterns and sharing of genetic variation. Nucleotide diversity within species is low in cichlids, with 92% of surveyed populations having less diversity than the median value found in other vertebrates. Divergence within radiations is also low, and a large proportion of variation is shared among species due to incomplete lineage sorting and widespread hybridization. Population genetics therefore provides a suitable conceptual framework for evolutionary genomic studies of cichlid radiations. We focus in detail on the roles of hybridization in shaping the patterns of genetic variation and in promoting cichlid diversification.
Collapse
Affiliation(s)
- Hannes Svardal
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium; .,Naturalis Biodiversity Center, 2333 Leiden, The Netherlands
| | - Walter Salzburger
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| | - Milan Malinsky
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| |
Collapse
|
14
|
Härer A, Torres-Dowdall J, Rometsch SJ, Yohannes E, Machado-Schiaffino G, Meyer A. Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. MICROBIOME 2020; 8:149. [PMID: 33121541 PMCID: PMC7597055 DOI: 10.1186/s40168-020-00897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recent increases in understanding the ecological and evolutionary roles of microbial communities have underscored the importance of their hosts' biology. Yet, little is known about gut microbiota dynamics during the early stages of ecological diversification and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid fish (Amphilophus cf. citrinellus). Specifically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. RESULTS Bacterial communities of fish guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specific factors. Among individuals of the same crater lake, differentiation in trophic ecology was weakly associated with gut microbiota differentiation, suggesting that diet, to some extent, affects the gut microbiota. However, differences in trophic ecology were much more pronounced across than within species whereas similar patterns were not observed for taxonomic and functional differences of the gut microbiota. Across the two crater lakes, we could not detect conclusive evidence for parallel changes of the gut microbiota associated with trophic ecology. CONCLUSIONS A lack of clearly differentiated niches during the early stages of ecological diversification might result in non-parallel changes of gut microbial communities, as observed in our study system as well as in other recently diverged fish species. Video Abstract.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Current address: Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California USA
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Sina J. Rometsch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Elizabeth Yohannes
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Current address: Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
15
|
Riera JL, Baldo L. Microbial co-occurrence networks of gut microbiota reveal community conservation and diet-associated shifts in cichlid fishes. Anim Microbiome 2020; 2:36. [PMID: 33499972 PMCID: PMC7807433 DOI: 10.1186/s42523-020-00054-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The extent to which deterministic rather than stochastic processes guide gut bacteria co-existence and ultimately their assembling into a community remains largely unknown. Co-occurrence networks of bacterial associations offer a powerful approach to begin exploring gut microbial community structure, maintenance and dynamics, beyond compositional aspects alone. Here we used an iconic model system, the cichlid fishes, with their multiple lake assemblages and extraordinary ecological diversity, to investigate a) patterns of microbial associations that were robust to major phylogeographical variables, and b) changes in microbial network structure along dietary shifts. We tackled these objectives using the large gut microbiota sequencing dataset available (nine lakes from Africa and America), building geographical and diet-specific networks and performing comparative network analyses. Results Major findings indicated that lake and continental microbial networks were highly resembling in global topology and node taxonomic composition, despite the heterogeneity of the samples. A small fraction of the observed co-occurrences among operational taxonomic units (OTUs) was conserved across all lake assemblages. These were all positive associations and involved OTUs within the genera Cetobacterium and Turicibacter and several OTUs belonging to the families of Peptostreptococcaceae and Clostridiaceae (order Clostridiales). Mapping of diet contribution on the African Lake Tanganyika network (therefore excluding the geographic variable) revealed a clear community change from carnivores (C) to omnivores (O) to herbivores (H). Node abundances and effect size for pairwise comparisons between diets supported a strong contrasting pattern between C and H. Moreover, diet-associated nodes in H formed complex modules of positive interactions among taxonomically diverse bacteria (mostly Verrucomicrobia and Proteobacteria). Conclusions Conservation of microbial network topologies and specific bacterial associations across distinct lake assemblages point to a major host-associated effect and potential deterministic processes shaping the cichlid gut microbiota. While the origin and biological relevance of these common associations remain unclear, their persistence suggests an important functional role in the cichlid gut. Among the very diverse cichlids of L. Tanganyika, diet nonetheless represents a major driver of microbial community changes. By intersecting results from predictive network inferences and experimental trials, future studies will be directed to explore the strength of these associations, predict the outcome of community alterations driven by diet and ultimately help understanding the role of gut microbiota in cichlid trophic diversification.
Collapse
Affiliation(s)
- Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain. .,Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190535. [PMID: 32654645 DOI: 10.1098/rstb.2019.0535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sina J Rometsch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
17
|
Jacobs A, Carruthers M, Yurchenko A, Gordeeva NV, Alekseyev SS, Hooker O, Leong JS, Minkley DR, Rondeau EB, Koop BF, Adams CE, Elmer KR. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genet 2020; 16:e1008658. [PMID: 32302300 PMCID: PMC7164584 DOI: 10.1371/journal.pgen.1008658] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Madeleine Carruthers
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrey Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Natalia V. Gordeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey S. Alekseyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Oliver Hooker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Jong S. Leong
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - David R. Minkley
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Eric B. Rondeau
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Ben F. Koop
- Biology/Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow, United Kingdom
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Gaither MR, Greaves S, Amirthalingam P. The physiology of rapid ecological specialization: A look at the Midas cichlids. Mol Ecol 2020; 29:1215-1218. [PMID: 32155299 DOI: 10.1111/mec.15408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Understanding the process of speciation is a primary goal of evolutionary biology, yet the question of whether speciation can reach completion in the presence of gene flow remains controversial. For more than 50 years, the cichlids of Africa, and more recently those in South and Central America, have served as model systems for the study of speciation in nature. Cichlids are distinguished by their enormous species richness, their diversity of behavioural and trophic adaptations, and their rapid rate of divergence. In both Africa and South and Central America, the repeated interaction of geology, new founder events and adaptive evolution has created a series of natural experiments with speciation occurring both within and between waterbodies of differing ages. In the "From the Cover" paper in this issue of the Journal of Molecular Ecology, Raffini, Schneider, Franchini, Kautt and Meyer move beyond the question of which mechanisms drive speciation, and instead show that divergent morphologies and physiologies translate into adaptive traits. They investigate differences in physiology and gene expression profiles in a benthic/limnetic species pair of Midas cichlidsin a 24,000-year-old Nicaraguan crater lake. While recently diverged, these two species demonstrate significant ecological, but limited genetic differentiation. The authors find that the distinct morphotypes translate into relevant differences in swimming performance and metabolic rates that correspond to differential gene expression profiles. Hence, the authors take an integrative approach examining the impacts of morphological differences on performance and niche partitioning: an approach that can advance our understanding of the drivers of morphological and physiological divergence during speciation.
Collapse
Affiliation(s)
- Michelle R Gaither
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Samuel Greaves
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Pavithiran Amirthalingam
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
19
|
Olave M, Meyer A. Implementing Large Genomic Single Nucleotide Polymorphism Data Sets in Phylogenetic Network Reconstructions: A Case Study of Particularly Rapid Radiations of Cichlid Fish. Syst Biol 2020; 69:848-862. [DOI: 10.1093/sysbio/syaa005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
AbstractThe Midas cichlids of the Amphilophus citrinellus spp. species complex from Nicaragua (13 species) are an extraordinary example of adaptive and rapid radiation ($<$24,000 years old). These cichlids are a very challenging group to infer its evolutionary history in phylogenetic analyses, due to the apparent prevalence of incomplete lineage sorting (ILS), as well as past and current gene flow. Assuming solely a vertical transfer of genetic material from an ancestral lineage to new lineages is not appropriate in many cases of genes transferred horizontally in nature. Recently developed methods to infer phylogenetic networks under such circumstances might be able to circumvent these problems. These models accommodate not just ILS, but also gene flow, under the multispecies network coalescent (MSNC) model, processes that are at work in young, hybridizing, and/or rapidly diversifying lineages. There are currently only a few programs available that implement MSNC for estimating phylogenetic networks. Here, we present a novel way to incorporate single nucleotide polymorphism (SNP) data into the currently available PhyloNetworks program. Based on simulations, we demonstrate that SNPs can provide enough power to recover the true phylogenetic network. We also show that it can accurately infer the true network more often than other similar SNP-based programs (PhyloNet and HyDe). Moreover, our approach results in a faster algorithm compared to the original pipeline in PhyloNetworks, without losing power. We also applied our new approach to infer the phylogenetic network of Midas cichlid radiation. We implemented the most comprehensive genomic data set to date (RADseq data set of 679 individuals and $>$37K SNPs from 19 ingroup lineages) and present estimated phylogenetic networks for this extremely young and fast-evolving radiation of cichlid fish. We demonstrate that the MSNC is more appropriate than the multispecies coalescent alone for the analysis of this rapid radiation. [Genomics; multispecies network coalescent; phylogenetic networks; phylogenomics; RADseq; SNPs.]
Collapse
Affiliation(s)
- Melisa Olave
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
20
|
Raffini F, Schneider RF, Franchini P, Kautt AF, Meyer A. Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally‐adapted sympatric cichlid fishes. Mol Ecol 2019; 29:1219-1234. [DOI: 10.1111/mec.15304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Raffini
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
- Max Planck Institute for Ornithology Radolfzell Germany
| | - Ralf F. Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
| | - Andreas F. Kautt
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie Department of Biology University of Konstanz Konstanz Germany
- International Max Planck Research School (IMPRS) for Organismal Biology Max‐Planck‐Institut für Ornithologie Radolfzell Germany
| |
Collapse
|
21
|
Baldo L, Riera JL, Salzburger W, Barluenga M. Phylogeography and Ecological Niche Shape the Cichlid Fish Gut Microbiota in Central American and African Lakes. Front Microbiol 2019; 10:2372. [PMID: 31681230 PMCID: PMC6803461 DOI: 10.3389/fmicb.2019.02372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Cichlid fishes, with their repeated colonization of lakes and subsequent radiations at different scales of phylogenetic and ecological diversification, offer an excellent model system to understand the factors shaping the host-gut microbiota association in nature. Here, we characterized the gut microbiota of the Amphilophus species complex from Central America (known as the Midas cichlid complex), encompassing 158 wild specimens (13 species) collected from seven Nicaraguan lakes, and combined these data with previously published data from two African lakes (spanning 29 species). Our aim was to comprehensively explore trends in microbiota variation and persistence along the large spatial and temporal scales of cichlid diversification (from the oldest radiation in L. Tanganyika, 9-12 My old, to young ones in Nicaraguan crater lakes, <0.5 My old), in allopatry and sympatry (within and across lakes), and across the range of dietary niches (from highly specialized to generalist feeders). Despite their extraordinary diversity, cichlids shared a remarkably conserved microbial taxonomic profile, which argues for a primary role of the host genetics in the assembly and maintenance of these microbial communities. Within this partly constrained microbiota profile, geographic isolation (continent and lake) represented the first level of discrimination. For the Midas cichlid, a partial congruency was found between host microbiota and genetic distances, suggesting that microbial communities have partly diversified along their cichlid phylogeographic history of crater lake colonization. In sympatry (within lakes), the young and poorly ecologically diversified cichlid assemblages of Central American lakes display largely unresolved gut microbiotas (in terms of both alpha and beta diversities), whereas the phylogenetically and ecologically diverse species found in African lakes showed greater microbial interspecific diversity. This pattern largely points to the level of habitat segregation, trophic niche overlap, and reproductive barriers as major modulators of the gut microbiota connectivity among sympatric species.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
22
|
Martin CH, McGirr JA, Richards EJ, St. John ME. How to Investigate the Origins of Novelty: Insights Gained from Genetic, Behavioral, and Fitness Perspectives. Integr Org Biol 2019; 1:obz018. [PMID: 33791533 PMCID: PMC7671130 DOI: 10.1093/iob/obz018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.
Collapse
Affiliation(s)
- C H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - J A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - E J Richards
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - M E St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Härer A, Meyer A, Torres‐Dowdall J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2018; 2:341-354. [PMID: 30283686 PMCID: PMC6121847 DOI: 10.1002/evl3.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeMassachusetts02138
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| |
Collapse
|