1
|
Ding Z, Gu T, Zhang M, Wang K, Sun D, Li J. Angstrom-Scale 2D Channels Designed For Osmotic Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403593. [PMID: 39180252 DOI: 10.1002/smll.202403593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/04/2024] [Indexed: 08/26/2024]
Abstract
Confronting the impending exhaustion of traditional energy, it is urgent to devise and deploy sustainable clean energy alternatives. Osmotic energy contained in the salinity gradient of the sea-river interface is an innovative, abundant, clean, and renewable osmotic energy that has garnered considerable attention in recent years. Inspired by the impressively intelligent ion channels in nature, the developed angstrom-scale 2D channels with simple fabrication process, outstanding design flexibility, and substantial charge density exhibit excellent energy conversion performance, opening up a new era for osmotic energy harvesting. However, this attractive research field remains fraught with numerous challenges, particularly due to the complexities associated with the regulation at angstrom scale. In this review, the latest advancements in the design of angstrom-scale 2D channels are primarily outlined for harvesting osmotic energy. Drawing upon the analytical framework of osmotic power generation mechanisms and the insights gleaned from the biomimetic intelligent devices, the design strategies are highlighted for high-performance angstrom channels in terms of structure, functionalization, and application, with a particular emphasis on ion selectivity and ion transport resistance. Finally, current challenges and future prospects are discussed to anticipate the emergence of more anomalous properties and disruptive technologies that can promote large-scale power generation.
Collapse
Affiliation(s)
- Zhengmao Ding
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng Gu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minghao Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kaiqiang Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinjin Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
3
|
Gao Z, Rao S, Wang J, Wang D, Zhang T, Feng X, Liu Y, Shi J, Xue Y, Li W, Wang L, Rong C, Chen Y. Bionic Capsule Lithium-Ion Battery Anodes for Efficiently Inhibiting Volume Expansion. CHEMSUSCHEM 2024; 17:e202400830. [PMID: 38850522 DOI: 10.1002/cssc.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Magnetite (Fe3O4) has a large theoretical reversible capacity and rich Earth abundance, making it a promising anode material for LIBs. However, it suffers from drastic volume changes during the lithiation process, which lead to poor cycle stability and low-rate performance. Hence, there is an urgent need for a solution to address the issue of volume expansion. Taking inspiration from how glycophyte cells mitigate excessive water uptake/loss through their cell wall to preserve the structural integrity of cells, we designed Fe3O4@PMMA multi-core capsules by microemulsion polymerization as a kind of anode materials, also proposed a new evaluation method for real-time repair effect of the battery capacity. The Fe3O4@PMMA anode shows a high reversible specific capacity (858.0 mAh g-1 at 0.1 C after 300 cycles) and an excellent cycle stability (450.99 mAh g-1 at 0.5 C after 450 cycles). Furthermore, the LiNi0.8Co0.1Mn0.1O2/Fe3O4@PMMA pouch cells exhibit a stable capacity (200.6 mAh) and high-capacity retention rate (95.5 %) after 450 cycles at 0.5 C. Compared to the original battery, the capacity repair rate of this battery is as high as 93.4 %. This kind of bionic capsules provide an innovative solution for improving the electrochemical performance of Fe3O4 anodes to promote their industrial applications.
Collapse
Affiliation(s)
- Zhenhai Gao
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Shun Rao
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Junjun Wang
- General Research and Development Institute, China FAW Corporation Limited, Changchun, 130013, China
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Corporation Limited, Changchun, 130013, China
| | - Deping Wang
- General Research and Development Institute, China FAW Corporation Limited, Changchun, 130013, China
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Corporation Limited, Changchun, 130013, China
| | - Tianyao Zhang
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Xinbo Feng
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Yuanhang Liu
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Jiawei Shi
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Yao Xue
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, 130022, China
- College of Automotive Engineering, Jilin University, Changchun, 130025, China
| | - Lili Wang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Changru Rong
- General Research and Development Institute, China FAW Corporation Limited, Changchun, 130013, China
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Corporation Limited, Changchun, 130013, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
4
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Zhang Y, Wang L, Bian Q, Zhong C, Chen Y, Jiang L. Enhanced Ionic Power Generation via Light-Driven Active Ion Transport Across 2D Semiconductor Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311379. [PMID: 38829150 DOI: 10.1002/smll.202311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/04/2024] [Indexed: 06/05/2024]
Abstract
2D semiconductor heterostructures exhibit broad application prospects. However, regular nanochannels of heterostructures rarely caught the researcher's attention. Herein, a metal-organic framework (i.e., Cu3(HHTP)2) and transition metal dichalcogenides (i.e., MoS2)-based multilayer van der Waals heterostructure (i.e., Cu3(HHTP)2/MoS2) realized band alignment-dominated light-driven ion transport and further light-enhanced ionic energy generation. High-density channels of the heterostructure provide high-speed pathways for ion transmembrane transport. Upon light illumination, a net ionic flow occurs at a symmetric concentration, suggesting a directional cationic transport from Cu3(HHTP)2 to MoS2. This is because Cu3(HHTP)2/MoS2 heterostructures containing type-II band alignment can generate photovoltaic motive force through light-induced efficient charge separation to drive ion transport. After introducing into the ionic power generation system, the maximum power density under illumination can achieve notable improvement under different concentration differences. In addition to the photovoltaic motive force, type-II band alignment and material defect capture-induced surface charge increase also raise ion selectivity and flux, greatly facilitating ionic energy generation. This work demonstrates that 2D semiconductor heterostructures with rational band alignment can not only be a potential platform for optimizing light-enhanced ionic energy harvesting but also provide a new thought for biomimetic iontronic devices.
Collapse
Affiliation(s)
- Yuhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Qing Bian
- Analysis and Testing Central Facility of Anhui University of Technology, Maanshan, 243032, China
| | - Chengcheng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yupeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
6
|
Zhang Y, Ma Y, Wang L, Li C, Wu L, Zhong C, Sun B, Chen Y, Jiang L. Nanofluidic Membrane-Assisted Organic Electrochemical Transistors for Bioinspired Gustatory Sensation Based on Selective Cation Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403629. [PMID: 38958098 DOI: 10.1002/smll.202403629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.
Collapse
Affiliation(s)
- Yue Zhang
- School of Science, China University of Geosciences, Beijing, 100083, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Chunyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lijuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chengcheng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bing Sun
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhang Y, Liu J, Rong C, Wang D, Li W, Gao Z, Chen Y. Current Advances of CO Sensing Based on Low Dimensional Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18821-18836. [PMID: 39196291 DOI: 10.1021/acs.langmuir.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbon monoxide (CO) is a harmful gas with significant impacts on human health and the environment. Its timely detection, especially in the event of thermal runaway in automotive lithium batteries, is crucial to prevent casualties. This paper reviews the progress in the development of efficient, sensitive, and reliable CO sensors, focusing on electrochemical, optical, and resistive sensing materials. Low-dimensional materials have a large specific surface area, providing an abundant number of active sites, which has drawn extensive attention from researchers. According to the different sensor signals, we categorized these sensors into electrical and optical signal sensors. We hope that by systematically introducing the sensing mechanism and sensing performance of these two kinds of sensors, appropriate CO sensors can be developed in different application scenarios so as to realize early warning and monitoring to the maximum extent, reduce industrial losses, and ensure the life and health of personnel.
Collapse
Affiliation(s)
- Yundi Zhang
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Jie Liu
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Changru Rong
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Deping Wang
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China
| | - Zhenhai Gao
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
9
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
10
|
Li Y, Song Y, Zu H, Zhang F, Yang H, Dai W, Meng J, Jiang L. Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation. EXPLORATION (BEIJING, CHINA) 2024; 4:20230085. [PMID: 38939859 PMCID: PMC11189568 DOI: 10.1002/exp.20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.
Collapse
Affiliation(s)
- Yong Li
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
| | - Yingnan Song
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
| | - Hongye Zu
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
| | - Feilong Zhang
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Hui Yang
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
| | - Wei Dai
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
| | - Jingxin Meng
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
- Binzhou Institute of Technology, Weiqiao‐UCASScience and Technology parkBinzhouPeople's Republic of China
| | - Lei Jiang
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople's Republic of China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| |
Collapse
|
11
|
Wang H, Chen X, Chen B, Zhao Y, Zhang B. Development of a spiropyran-assisted cellulose aerogel with switchable wettability as oil sorbent for oil spill cleanup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171451. [PMID: 38438027 DOI: 10.1016/j.scitotenv.2024.171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This research presents the successful development and optimization of a spiropyran-assisted cellulose aerogel (CNF-SP) aerogel with UV-induced switchable wettability, and the evaluation of its performance as an effective oil sorbent for oil spill cleanup. The aerogel initially exhibited strong hydrophobicity (124°) and showed UV-induced switchable wettability due to the photo-response structure of spiropyran. Upon UV irradiation, the hydrophobicity of the aerogel could be switched to hydrophilicity (31°), while visible light irradiation could restore its hydrophobicity. The three-dimensional (3D) porous structure of the CNF-SP aerogel combined with the hydrophobic properties of spiropyranol led to its great oil adsorption performance (27-30 g/g of oil adsorption ratio). The central composite design (CCD) was applied to optimize the aerogel and investigate the effects of raw material ratio (i.e., carboxymethyl cellulose, carboxyethyl spiropyran, polyvinyl alcohol, and nano zinc oxide) on the oil sorption performance of the aerogel. The optimized CNF-SP aerogel demonstrated a high oil sorption efficiency, particularly in acid and cold environments. Moreover, the switchable function indicated that the aerogel exhibited reusability and renewability, with the added benefit of UV-induced oil recovery.
Collapse
Affiliation(s)
- Hongjie Wang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiujuan Chen
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
12
|
Lancellotti L, Bianchi A, Kovtun A, Gazzano M, Marforio TD, Xia ZY, Calvaresi M, Melucci M, Zanardi C, Palermo V. Selective ion transport in large-area graphene oxide membrane filters driven by the ionic radius and electrostatic interactions. NANOSCALE 2024; 16:7123-7133. [PMID: 38501609 DOI: 10.1039/d3nr05874c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.
Collapse
Affiliation(s)
- Lidia Lancellotti
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Antonio Bianchi
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Alessandro Kovtun
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Tainah Dorina Marforio
- Department of Chemistry 'G. Ciamician', Alma Mater Studiorum University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Zhen Yuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg S-41296, Sweden
| | - Matteo Calvaresi
- Department of Chemistry 'G. Ciamician', Alma Mater Studiorum University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Manuela Melucci
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Chiara Zanardi
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Vincenzo Palermo
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
13
|
Tsutsui M, Hsu W, Yokota K, Leong IW, Daiguji H, Kawai T. Scalability of nanopore osmotic energy conversion. EXPLORATION (BEIJING, CHINA) 2024; 4:20220110. [PMID: 38855615 PMCID: PMC11022616 DOI: 10.1002/exp.20220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024]
Abstract
Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiOsakaJapan
| | - Wei‐Lun Hsu
- Department of Mechanical EngineeringThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kazumichi Yokota
- Health and Medical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TakamatsuKagawaJapan
| | - Iat Wai Leong
- The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiOsakaJapan
| | - Hirofumi Daiguji
- Department of Mechanical EngineeringThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiOsakaJapan
| |
Collapse
|
14
|
Wang L, Zhang Y, Chen Y, Jiang L. Green Alga-Inspired Underwater Vision Based on Light-Driven Active Ion Transport across Janus Dual-Field Heterostructures. ACS NANO 2024; 18:9043-9052. [PMID: 38483837 DOI: 10.1021/acsnano.3c12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Natural organisms have evolved various biological ion channels to make timely responses toward different physical and/or chemical stimuli, giving guidance to construct artificial counterparts and expand the corresponding applications. They have also shown promising potential to overcome disadvantages of traditional electronic devices (e.g., energy-consuming operation and adverse humidity interference). Herein, we constructed a green alga-inspired nanofluidic system based on a Janus dual-field heterogeneous membrane (i.e., J-HM), which can function underwater as an artificial visual platform for light perception through enhanced active ion transport. The J-HM was obtained through sequentially assembled MXene and Cu-HHTP (i.e., a metal-organic framework based on the reaction between 2,3,6,7,10,11-hexahydroxytriphenylene hydrate (HHTP) and Cu2+) building units. Due to the formed temperature gradient and intramembrane electric field caused by the localized thermal excitation and efficient charge separation of J-HM under illumination, thermo-osmotic and photo-driven forces are generated for preferential cation transport from Cu-HHTP to MXene. Furthermore, unidirectional active transport can be enhanced by self-diffusion under a concentration gradient. Then, the corresponding underwater light perceptions at various light illumination conditions are explored, showing nearly a linear correlation with the light intensity. Finally, it is demonstrated that the visual platform can achieve object shape, definition, and distance recognition using a defined pixelated matrix, giving impetus to develop ionic signal transmission based sensing systems.
Collapse
Affiliation(s)
- Lili Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yuhui Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
15
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Liu Z, Liu C, Chen Z, Huang H, Liu Y, Xue L, Sun J, Wang X, Xiong P, Zhu J. Recent advances in two-dimensional materials for hydrovoltaic energy technology. EXPLORATION (BEIJING, CHINA) 2023; 3:20220061. [PMID: 37324031 PMCID: PMC10191061 DOI: 10.1002/exp.20220061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Hydrovoltaic energy technology that generates electricity directly from the interaction of materials with water has been regarded as a promising renewable energy harvesting method. With the advantages of high specific surface area, good conductivity, and easily tunable porous nanochannels, two-dimensional (2D) nanomaterials have promising potential in high-performance hydrovoltaic electricity generation applications. Herein, this review summarizes the most recent advances of 2D materials for hydrovoltaic electricity generation, including carbon nanosheets, layered double hydroxide (LDH), and layered transition metal oxides and sulfides. Some strategies were introduced to improve the energy conversion efficiency and the output power of hydrovoltaic electricity generation devices based on 2D materials. The applications of these devices in self-powered electronics, sensors, and low-consumption devices are also discussed. Finally, the challenges and perspectives on this emerging technology are outlined.
Collapse
Affiliation(s)
- Zhihang Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Zhaotian Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Honglan Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yifan Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| |
Collapse
|
17
|
Li C, Jiang Y, Wu Z, Zhang Y, Huang C, Cheng S, You Y, Zhang P, Chen W, Mao L, Jiang L. Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angew Chem Int Ed Engl 2023; 62:e202215906. [PMID: 36374215 DOI: 10.1002/anie.202215906] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 μS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Wang L, Chen Y. Bioinspired Dual-Driven Binary Heterogeneous Nanofluidic Ionic Diodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12450-12456. [PMID: 36197723 DOI: 10.1021/acs.langmuir.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, bioinspired 2D material-based nanofluidic systems with unique properties and advantages have been receiving considerable research interest and getting rapid development. However, it remains a huge challenge to integrate adaptive responsiveness to external stimuli and asymmetric ion transport characteristics into the 2D nanofluidic systems. Herein, we report a dual-driven switchable asymmetric ionic transport phenomenon through a graphene oxide-based heterogeneous 2D nanofluidic membrane. Taking advantage of the formation of a charge heterojunction induced by the variation of pH or UV irradiation, a maximum ionic current rectification (ICR) ratio of ca. 56 for pH or 140 for light was achieved. Such smart nanofluidic devices with pH and light dual-responsiveness and asymmetric ion transport behaviors provide a universal strategy for potential applications in chemical sensing, water treatment, and energy conversion and establish a promising platform for exploring advanced quantum ionics biodevices with ultrafast signal transmission, nanochannel-structured bioreactors with high efficiency, etc.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| |
Collapse
|
19
|
Ren L, Zhang B. Room temperature liquid metals for flexible alkali metal-chalcogen batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20210182. [PMID: 37325500 PMCID: PMC10190926 DOI: 10.1002/exp.20210182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/14/2022] [Indexed: 06/17/2023]
Abstract
Flexibility has become a certain trend in the development of secondary batteries to meet the requirements of wide portability and applicability. On account of their intrinsic high energy density, flexible alkali metal-chalcogen batteries are attracting increasing interest. Although great advances have been made in promoting the electrochemical performance of metal-S or metal-Se batteries, explorations on flexible chalcogen-based batteries are still limited. Extensive and rational use of soft materials for electrodes is the main bottleneck. The re-emergence of safe liquid metals (LMs), which provide an ideal combination of metallic and fluidic properties at room temperature, offers a fascinating paradigm for constructing flexible chalcogen batteries. They may provide dendrite-free anodes and restrain the dissolution of polysulfides and polyselenides for cathodes. From this perspective, we elaborate on the appealing features of LMs for the construction of flexible metal-chalcogen batteries. Recent advances on LM-based battery are discussed, covering novel liquid alkali metals as anodes and LM-sulfur hybrids as cathodes, with the focus placed on durable high-energy-density output and self-healing flexible capability. At last, perspectives are proposed on the future development of LM-based chalcogen batteries, and the viable strategies to meet the current challenges that are obstructing more practical flexible chalcogen batteries.
Collapse
Affiliation(s)
- Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and EngineeringWuhan University of TechnologyWuhanP. R. China
- Institute for Superconducting and Electronic MaterialsAustralian Institute of Innovative MaterialsUniversity of Wollongong, Innovation CampusNorth WollongongNew South WalesAustralia
| | - Bin‐Wei Zhang
- College of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
- Center of Advanced Energy Technology and Electrochemistry, Institute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingP. R. China
- Institute for Superconducting and Electronic MaterialsAustralian Institute of Innovative MaterialsUniversity of Wollongong, Innovation CampusNorth WollongongNew South WalesAustralia
| |
Collapse
|
20
|
Li L, Sun M, Hu Z, Nie X, Xiao T, Liu Z. Cation-Selective Oxide Semiconductor Mesoporous Membranes for Biomimetic Ion Rectification and Light-Powered Ion Pumping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202910. [PMID: 35931463 DOI: 10.1002/smll.202202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Artificial membranes precisely imitating the biological functions of ion channels and ion pumps have attracted significant attention to explore nanofluidic energy conversion. Herein, inspired by the cyclic ion transport for the photosynthesis in purple bacteria, a bilayer inorganic membrane (TiO2 /AAO) composed of oxide semiconductor (TiO2 ) mesopores on anodic alumina (AAO) macropores is we developed. This inorganic membrane achieves the functions of ion channels and ion pumps, including the ion rectification and light-powered ion pumping. The asymmetric charge distribution across the bilayer membrane contributes to the cationic selectivity and ion rectification characteristics. The electrons induced by ultraviolet irradiation introduce a built-in electric field across TiO2 /AAO membrane, which pumps the active ion transport from a low to a high concentration. This work integrates the functions of biological ion channels and ion pumps within an artificial membrane for the first time, which paves the way to explore multifunctional membranes analogous to its biological counterpart.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingyan Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaoyan Nie
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
21
|
Jiang X, Yan N, Wang M, Feng M, Guan Q, Xu L. Magnetic nanostructure and biomolecule synergistically promoted Suaeda-inspired self-healing hydrogel composite for seawater evaporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154545. [PMID: 35304147 DOI: 10.1016/j.scitotenv.2022.154545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Multifunctional hydrogels with excellent comprehensive performance are essential prerequisite for the implementation of effective water resources technology with high efficiency and low energy consumption. Inspired by the water purification and self-healing properties of natural plants, and based on the synergy of photothermal and biological effects, high photothermal Fe3O4 nanoparticles and natural polyhydroxy oligomeric proanthocyanidin (OPC) are introduced into a water-active polyvinyl alcohol (PVA) hydrogel. Two new bio-hydrogels of PVA/Fe3O4/graphite and PVA/OPC with self-healing and stretchable properties are proposed and designed. The obtained hydrogels exhibit reversible covalent cross-linked water-promoted healing (chemically) and photothermal melting/recrystallization healing (physically). The double-layered hydrogel composite demonstrates a dual response function (sunlight and near-infrared light), along with water purification properties. It is prepared through a water spray triggered self-healing process. The ultimate fracture strain of the photothermal layer and purification layer hydrogel was more than 1000% and 400% respectively after self-healing.After 48 h of hydrogel composite adsorption, the color of a methylene blue solution faded, and the absorption peak at 664 nm decreased. In addition, this research adopts a phased evaporation method to concentrate local energy and provide power for seawater evaporation. The evaporation efficiency of seawater induced by near-infrared (NIR) light was up to 3.15 kg m-2 h-1, whereas that under sunlight was 1.25 kg m-2 h-1. Selection of the evaporation excitation light source allowed control of the evaporation efficiency. The proposed technology is expected to be widely applicable to the staged evaporation of seawater as well as water purification.
Collapse
Affiliation(s)
- Xizhi Jiang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nina Yan
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Wang
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Min Feng
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Xu
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
22
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Abstract
Bio-inspired surfaces enabling wet adhesion management are of significant interest for applications in the field of biomedicine, as components of bionic robots and as wearable devices. In the course of biological evolution, many organisms have evolved wet adhesive surfaces with strong attachment ability. Insects enhance their adhesion on contact substrates using secreted adhesive liquids. Here we discuss concepts of bio-inspired wet adhesion. First, remaining challenges associated with the understanding and the design of biological and artificial wet adhesive systems as well as strategies to supply adhesive liquids to their contact surfaces are reviewed. Then, future directions to construct wet adhesive surfaces with liquids are discussed in detail. Finally, a model of wet adhesion management with liquids is suggested, which might help the design of next-generation bio-inspired wet adhesive surfaces.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Martin Steinhart
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
24
|
Gao Z, Rao S, Zhang T, Gao F, Xiao Y, Shali L, Wang X, Zheng Y, Chen Y, Zong Y, Li W, Chen Y. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103796. [PMID: 34923778 PMCID: PMC8844567 DOI: 10.1002/advs.202103796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Vigorous development of electric vehicles is one way to achieve global carbon reduction goals. However, fires caused by thermal runaway of the power battery has seriously hindered large-scale development. Adding thermal runaway retardants (TRRs) to electrolytes is an effective way to improve battery safety, but it often reduces electrochemical performance. Therefore, it is difficult to apply in practice. TRR encapsulation is inspired by the core-shell structures such as cells, seeds, eggs, and fruits in nature. In these natural products, the shell isolates the core from the outside, and has to break as needed to expose the core, such as in seed germination, chicken hatching, etc. Similarly, TRR encapsulation avoids direct contact between the TRR and the electrolyte, so it does not affect the electrochemical performance of the battery during normal operation. When lithium-ion battery (LIB) thermal runaway occurs, the capsules release TRRs to slow down and even prevent further thermal runaway. This review aims to summarize the fundamentals of bioinspired TRR capsules and highlight recent key progress in LIBs with TRR capsules to improve LIB safety. It is anticipated that this review will inspire further improvement in battery safety, especially for emerging LIBs with high-electrochemical performance.
Collapse
Affiliation(s)
- Zhenhai Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Shun Rao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Tianyao Zhang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Fei Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yang Xiao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Longfei Shali
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Xiaoxu Wang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yadan Zheng
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yiyuan Chen
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yuan Zong
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Weifeng Li
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|