1
|
Zhang H, Wang Y, Qiao W, Hu X, Qiang H, Xia K, Du L, Yang L, Bao Y, Gao J, Zhang T, Yu Z. An injectable multifunctional nanocomposite hydrogel promotes vascularized bone regeneration by regulating macrophages. J Nanobiotechnology 2025; 23:283. [PMID: 40197239 PMCID: PMC11978117 DOI: 10.1186/s12951-025-03358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
The local inflammatory microenvironment, insufficient vascularization, and inadequate bone repair materials are the three key factors that constrain the repair of bone defects. Here, we synthesized a composite nanoparticle, TPQ (TCP-PDA-QK), with a core‒shell structure. The core consists of nanotricalcium phosphate (TCP), and the shell is derived from polydopamine (PDA). The surface of the shell is modified with a vascular endothelial growth factor (VEGF) mimic peptide (QK peptide). TPQ was then embedded in porous methacrylate gelatin (GelMA) to form a TPQGel hydrogel. In the inflammatory environment, the TPQGel hydrogel can gradually release drugs through pH responsiveness, promoting M2 macrophage polarization, vascularization and bone regeneration in turn. In addition, reprogrammed M2 macrophages stimulate the generation of anti-inflammatory and pro-healing growth factors, which provide additional support for angiogenesis and bone regeneration. The TPQGel hydrogel can not only accurately fill irregular bone defects but also has excellent biocompatibility, making it highly suitable for the minimally invasive treatment of bone defects. Transcriptomic tests revealed that the TPQGel hydrogel achieved macrophage reprogramming by regulating the PI3K-AKT signalling pathway. Overall, the TPQGel hydrogel can be harnessed for safe and efficient therapeutics that accelerate the repair of bone defects.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kuo Xia
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Luling Yang
- Digestive Endoscopy Center, School of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yi Bao
- Biological Safety Protection 3-Level Laboratory, Guangxi Medical University, Nanning, Guangxi Zhuang, 530021, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Chen W, Liu D, Lu K, Xu M, Li D, Yan W, Chen S, Li B. Organoids of Musculoskeletal System for Disease Modeling, Drug Screening, and Regeneration. Adv Healthc Mater 2025; 14:e2402444. [PMID: 39610173 DOI: 10.1002/adhm.202402444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Musculoskeletal diseases have emerged as the leading cause of disability worldwide, with their prevalence increasing annually. In light of this escalating health challenge, organoids, an emerging technology in tissue engineering, offer promising solutions for disease modeling, drug screening, regeneration, and repair processes. The successful development of musculoskeletal organoids represents a significant breakthrough, providing a novel platform for studying musculoskeletal diseases and facilitating the discovery of new treatments. Moreover, organoids serve as valuable complements to traditional 2D culture methods and animal models, offering rich insights into musculoskeletal biology. This review provides an overview of organoid technology, outlining the construction processes of various musculoskeletal organoids and highlighting their similarities and differences. Furthermore, the challenges associated with organoid technology in musculoskeletal systems are discussed and insights into future perspectives are offered.
Collapse
Affiliation(s)
- Weicheng Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Dachuan Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Lu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Mengping Xu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Di Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Wei Yan
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Song Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
3
|
Xing SJ, Gao YF, Liu L, Sui BD, Da NN, Liu JY, Wang H, Yuan Y, Qin Y, Liu PS, Ying SQ, Zhang K, Liu JX, Chen J, Liu YH, Xie X, Jin Y, Zhang S, Zheng CX. Integrated Phenotypic and Transcriptomic Analyses of Osteoporosis in Type 2 Diabetic Mice. Int J Med Sci 2025; 22:1773-1790. [PMID: 40225857 PMCID: PMC11983309 DOI: 10.7150/ijms.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Type 2 diabetes (T2D) is a global metabolic condition associated with complications of multiple organs, including the bone. However, the exact impact of T2D on bone along the disease progression, particularly in the early phase, remains largely unknown. Methods: Four-week and sixteen-week high-fat diet (HFD) feeding-induced T2D mouse models were established, and the glucose metabolic status was examined. Bone mass was evaluated by micro-computed tomography (micro-CT), and immunofluorescent (IF) staining was performed for bone histomorphometry with enzyme-linked immunosorbent assay (ELISA) determining serum markers. RNA sequencing analysis was performed to examine the transcriptome of bone, and single-cell RNA-sequencing (scRNA-seq) analysis was further applied. Bone marrow mesenchymal stem cells (BMMSCs) were isolated and analyzed for functional behaviors. Results: The occurrence of glucose metabolic disorders was confirmed at both four weeks and sixteen weeks of HFD feeding, showing increased blood glucose levels with impaired glucose tolerance and insulin sensitivity. Notably, early T2D osteoporosis symptoms were detected at four weeks, especially in the trabecular bone, demonstrating reduced bone mass and mineral density. Histological analysis confirmed that bone remodeling and immune-related inflammation were also altered in T2D mice, remarkably at the early phase, mainly reflected by suppressed bone formation, stimulated bone resorption, increased macrophages, and elevated tumor necrosis factor-alpha (TNF-α) levels. Transcriptomic sequencing further demonstrated significant yet distinct changes in the gene expression profile of bone during T2D progression, which confirmed the histological findings. Notably, overlapping genes with altered expression at four weeks and sixteen weeks of T2D compared to the respective control were identified, and bone marrow scRNA-seq analysis indicated many of them were expressed in BMMSCs, suggesting BMMSCs critically involved in T2D osteoporosis. Dysregulated molecular profiles and functional abnormalities of BMMSCs in T2D mice were validated by ex vivo assays, showing early and persistent occurrence of impaired colony-forming and proliferative capacities with biased differentiation potential. Conclusions: These findings elucidate the bone lesion phenotype in T2D, particularly at the early phase, uncover changes in gene expression profiles of bone during T2D progression, and clarify the functional alterations in bone stem cells, providing a basis for subsequent research and the development of treatment strategies.
Collapse
Affiliation(s)
- Shu-Juan Xing
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying-Feng Gao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning-Ning Da
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Qin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pei-Sheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ji Chen
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi-Han Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, Beijing 100039, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sha Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- College of Basic Medicine, Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Shuai Y, Yang T, Zheng M, Zheng L, Wang J, Mao C, Yang M. Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414543. [PMID: 39871679 PMCID: PMC11899506 DOI: 10.1002/adma.202414543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.g., mesenchymal stem cells [MSCs] and human umbilical vein endothelial cells) around them, and are capable of developing in vitro into cortical-bone organoids with a high number of MSC-derived osteoblasts. High-SF-content lamellar scaffolds, regardless of MSC inoculation, regenerated more bone than non-lamellar or low-SF-content lamellar scaffolds. They accelerated neovascularization by transforming macrophages from M1 to M2 phenotype, promoting bone regeneration to repair large segmental bone defects (LSBD) in minipigs within three months, even without growth factor supplements. The bone regeneration can be further enhanced by controlling the orientation of the lamella to be parallel to the long axis of bone during implantation. This work demonstrates the power of oriented lamellar bone-like protein scaffolds in repairing LSBD in large animal models.
Collapse
Affiliation(s)
- Yajun Shuai
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Tao Yang
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARChina
| | - Meidan Zheng
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for BiomedicineLife Sciences InstituteGuangxi Medical UniversityNanning530021China
| | - Jie Wang
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARChina
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Wang Q, Zhang T, Feng X, Chen P, Feng Y, Huang H, Qian Y, Guo Y, Yin Z. Modulatory effects of Lycium barbarum polysaccharide on bone cell dynamics in osteoporosis. Open Med (Wars) 2025; 20:20241104. [PMID: 39989614 PMCID: PMC11843162 DOI: 10.1515/med-2024-1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 02/25/2025] Open
Abstract
Background Osteoporosis (OP) is a systemic bone disorder marked by reduced bone mass and disrupted microstructure, leading to higher fracture risk. Epidemiological data from China show a 20.7% prevalence in women and 14.4% in men over 50, underscoring a pressing health issue given the aging population. More drugs to inhibit OP progression should be explored, and their biological mechanisms confirmed in preclinical studies. Methods In this study, we utilized Lycium barbarum polysaccharide (LBP), an extract from the traditional Chinese medicine Goji Berry. LBP, known for its range of pharmacological activities, was assessed for its potential therapeutic effects on OP. We specifically investigated its influence on the proliferation, apoptosis, migration, and functional differentiation of osteoblasts and osteoclasts. Results LBP significantly promotes osteoblast proliferation, migration, and osteogenic differentiation. Conversely, it inhibits the intrinsic apoptotic response in osteoblasts. For osteoclasts, LBP suppressed their proliferation, migration, and osteoclastic differentiation while enhancing their natural apoptosis. These results were confirmed by classical protein pathway detection experiments. Conclusion LBP showcases potential therapeutic properties against OP, particularly in modulating osteoblast/osteoclast activities. While its exact mechanisms through vital signaling pathways remain to be fully elucidated, LBP's prominent effects suggest that it is a promising agent for OP intervention, warranting further in-depth studies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, 215300, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Haoqiang Huang
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, 215300, China
| | - Yinhua Qian
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, Jiangsu, 215300, China
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zifei Yin
- Department of Orthopaedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu, 215300, China
| |
Collapse
|
6
|
Liu P, Guo H, Huang X, Liu A, Zhu T, Zheng C, Fu F, Zhang K, Li S, Luo X, Tian J, Jin Y, Xuan K, Sui B. Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration. Bone Res 2025; 13:21. [PMID: 39922812 PMCID: PMC11807224 DOI: 10.1038/s41413-024-00386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 02/10/2025] Open
Abstract
Healthy aging is a common goal for humanity and society, and one key to achieving it is the rejuvenation of senescent resident stem cells and empowerment of aging organ regeneration. However, the mechanistic understandings of stem cell senescence and the potential strategies to counteract it remain elusive. Here, we reveal that the aging bone microenvironment impairs the Golgi apparatus thus diminishing mesenchymal stem cell (MSC) function and regeneration. Interestingly, replenishment of cell aggregates-derived extracellular vesicles (CA-EVs) rescues Golgi dysfunction and empowers senescent MSCs through the Golgi regulatory protein Syntaxin 5. Importantly, in vivo administration of CA-EVs significantly enhanced the bone defect repair rate and improved bone mass in aging mice, suggesting their therapeutic value for treating age-related osteoporosis and promoting bone regeneration. Collectively, our findings provide insights into Golgi regulation in stem cell senescence and bone aging, which further highlight CA-EVs as a potential rejuvenative approach for aging bone regeneration.
Collapse
Affiliation(s)
- Peisheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ting Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kaichao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinyan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiongyi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Disease, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
7
|
Ji P, Qiu S, Huang J, Wang L, Wang Y, Wu P, Huo M, Shi J. Hydrolysis of 2D Nanosheets Reverses Rheumatoid Arthritis Through Anti-Inflammation and Osteogenesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415543. [PMID: 39726077 DOI: 10.1002/adma.202415543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation. The hydrolysis of CSNs produces anti-oxidative H2, alkaline Ca(OH)2, and silica. These moieties play significant roles in anti-oxidation, anti-inflammation, and pro-osteogenesis resulting in considerably better RA therapeutic consequences than anti-inflammation alone. Hydrogen gas is validated to eliminate excessive hydroxyl radicals and regulate macrophage re-polarization; the generated Ca(OH)2 can neutralize the acidic microenvironment and inhibit the osteoclast activity; and, the dissolved Ca2+ can effectively complex with phosphates to mineralize Ca3(PO4)2, promoting the osteogenesis of the focal joint. The multifunctional performances of CSNs are further confirmed in arthritic mouse and rabbit models, providing an advanced and robust therapeutic strategy against RA with high biocompatibility and clinical transformable promises.
Collapse
Affiliation(s)
- Penghao Ji
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Shuwen Qiu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Liping Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Yuemei Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Minfeng Huo
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| |
Collapse
|
8
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
9
|
Xu T, Cheng H, Pei H, Wang J, Shi Y, Zhang X, Huang D. Emodin Enhanced Microwave-Responsive Heterojunction with Powerful Bactericidal Capacity and Immunoregulation for Curing Bacteria-Infected Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409979. [PMID: 39604818 PMCID: PMC11744657 DOI: 10.1002/advs.202409979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Eradication of osteomyelitis caused by bacterial infections is still a major challenge. Microwave therapy has the inherent advantage of deep penetration in curing deep tissue infections. However, the antibacterial efficiency of sensitizers is limited by the weak energy of microwaves. Here, a hybrid heterojunction system (Fe3O4/CuS/Emo) is designed for curing bacterially infected osteomyelitis. As an enhanced microwave sensitizer, it shows supernormal microwave response ability. Specifically, Fe3O4 acts as a matrix to mediate magnetic loss. After CuS loading, the heterogeneous interface forms induce significant interfacial polarization, which increasing dielectric loss. On the basis of the heterojunction formed by the two semiconductors, emodin is innovatively introduced to modify it. This integration not only accelerates the movement of charge carriers but also enhances polarization loss due to the numerous functional groups present on the surface. This further optimizes the microwave thermal and catalytic response. In addition, the unique anti-inflammatory properties of emodin confer the ability of hybrid heterojunction to regulate the immune microenvironment. In vivo studies reveal that heterojunction modified by emodin programmed elimination of bacteria and regulation of the immune microenvironment. It offers a revolutionary approach to the treatment of bacterial osteomyelitis.
Collapse
Affiliation(s)
- Tao Xu
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| | - Hao Cheng
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Hailiang Pei
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| | - Jiameng Wang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yiwei Shi
- NHC Key Laboratory of PneumoconiosisDepartment of Pulmonary and Critical Care MedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiangyu Zhang
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Di Huang
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
10
|
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403907. [PMID: 39344577 DOI: 10.1002/smll.202403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Abnormal osteogenic and remodeling microenvironment due to osteoblast apoptosis are the primary causes of delayed fracture healing in osteoporotic patients. Magnesium (Mg) alloys exhibit biodegradability and appropriate elastic moduli for bone defects in osteoporosis, but the effect on the local bone remodeling disorder is still insufficient. Inspired by the "honeycomb," layered double hydroxide (LDH) with regular traps with graphene oxide quantum dots (GOQDs) inlayed is constructed by pulsed electrodeposition to generate GOQD/LDH composite nanocoatings on the surfaces of Mg alloy substrates. The honeycomb bionic multi-layer stereoscopic structure shows good regulation of the degradation of Mg alloy for the support of healing time required for osteoporotic bone defect. Within its lattice, the local microenvironment conducive to osteogenesis is provided by both the rescue effect of GOQD and LDH. The osteoblast apoptosis is rescued due to the activation of mitophagy to clear dysfunctional mitochondria, where the upregulation of BNIP3 phosphorylation played a key role. The osteoporotic rat model of femoral defects confirmed the improvement of bone regeneration and osseointegration of GOQD/LDH coating. In summary, honeycomb bionic composite nanocoatings with controllable degradation and excellent pro-osteogenic performance demonstrated a promising design strategy on Mg alloy implants in the therapy of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jianrong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
11
|
Shi Z, Yang F, Du T, Pang Q, Liu C, Hu Y, Zhu W, Chen X, Chen Z, Song B, Yu X, Ye Z, Shi L, Zhu Y, Pang Q. Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics. Mater Today Bio 2024; 28:101234. [PMID: 39309165 PMCID: PMC11414715 DOI: 10.1016/j.mtbio.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo, 315100, PR China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Weilai Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Zeming Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Xueqiang Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
12
|
Chen Y, Luo Y, Hou X, Zhang L, Wang T, Li X, Liu Z, Zhao J, Aierken A, Cai Z, Lu B, Tan S, Zhao X, Chen F, Zhou Z, Zheng L. Natural Affinity Driven Modification by Silicene to Construct a "Thermal Switch" for Tumorous Bone Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404534. [PMID: 39033540 PMCID: PMC11425228 DOI: 10.1002/advs.202404534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Tumorous bone defects present significant challenges for surgical bio-reconstruction due to the dual pathological conditions of residual tumor presence and extensive bone loss following excision surgery. To address this challenge, a "thermal switch" smart bone scaffold based on the silicene nanosheet-modified decalcified bone matrix (SNS@DBM) is developed by leveraging the natural affinity between collagen and silicene, which is elucidated by molecular dynamics simulations. Benefitting from its exceptional photothermal ability, biodegradability, and bioactivity, the SNS@DBM "thermal switch" provides an integrated postoperative sequential thermotherapy for tumorous bone loss by exerting three levels of photothermal stimulation (i.e., strong, moderate, and nonstimulation). During the different phases of postoperative bioconstruction, the SNS@DBM scaffold realizes simultaneous residual tumor ablation, tumor recurrence prevention, and bone tissue regeneration. These biological effects are verified in the tumor-bearing nude mice of patient-derived tissue xenografts and critical cranium defect rats. Mechanism research prompts moderate heat stimulus generated by and coordinating with SNSs can upregulate osteogenic genes, promote macrophages M2 polarization, and intensify angiogenesis of H-type vessels. This study introduces a versatile approach to the management of tumorous bone defects.
Collapse
Affiliation(s)
- Yi‐Xing Chen
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yi‐Ping Luo
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xiao‐Dong Hou
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Lei Zhang
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Tian‐Long Wang
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xi‐Fan Li
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhi‐Qing Liu
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Jin‐Hui Zhao
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Aihemaitijiang Aierken
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhu‐Yun Cai
- Department of OrthopedicsSecond Affiliated Hospital of Naval Medical University415 Fengyang RoadShanghai200003P. R. China
| | - Bing‐Qiang Lu
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Shuo Tan
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xin‐Yu Zhao
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Feng Chen
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesShanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Zi‐Fei Zhou
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Long‐Po Zheng
- Department of OrthopedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Shanghai Tenth People's Hospital Chongming BranchShanghai202150China
| |
Collapse
|
13
|
Huang L, Song Z, Wang J, Bian M, Zou J, Zou Y, Ge J, Lu S. Absorbable calcium and phosphorus bioactive membranes promote bone marrow mesenchymal stem cells osteogenic differentiation for bone regeneration. Open Life Sci 2024; 19:20220854. [PMID: 38633414 PMCID: PMC11022123 DOI: 10.1515/biol-2022-0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Large segmental bone defects are commonly operated with autologous bone grafting, which has limited bone sources and poses additional surgical risks. In this study, we fabricated poly(lactide-co-glycolic acid) (PLGA)/β-tricalcium phosphate (β-TCP) composite membranes by electrostatic spinning and further promoted osteogenesis by regulating the release of β-TCP in the hope of replacing autologous bone grafts in the clinical practice. The addition of β-TCP improved the mechanical strength of PLGA by 2.55 times. Moreover, β-TCP could accelerate the degradation of PLGA and neutralize the negative effects of acidification of the microenvironment caused by PLGA degradation. In vitro experiments revealed that PLGA/TCP10 membranes are biocompatible and the released β-TCP can modulate the activity of osteoblasts by enhancing the calcium ions concentration in the damaged area and regulating the pH of the local microenvironment. Simultaneously, an increase in β-TCP can moderate the lactate content of the local microenvironment, synergistically enhancing osteogenesis by promoting the tube-forming effect of human umbilical vein endothelial cells. Therefore, it is potential to utilize PLGA/TCP bioactive membranes to modulate the microenvironment at the site of bone defects to promote bone regeneration.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhuorun Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiayi Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiapeng Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanpei Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
14
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
15
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
16
|
Yan L, Cao Z, Ren L, Zhang T, Hu J, Chen J, Zhang X, Liu B, Feng C, Zhu J, Geng B. A Sonoresponsive and NIR-II-Photoresponsive Nanozyme for Heterojunction-Enhanced "Three-in-One" Multimodal Oncotherapy. Adv Healthc Mater 2024; 13:e2302190. [PMID: 37792422 DOI: 10.1002/adhm.202302190] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Although low-cost nanozymes with excellent stability have demonstrated the potential to be highly beneficial for nanocatalytic therapy (NCT), their unsatisfactory catalytic activity accompanied by intricate tumor microenvironment (TME) significantly hinders the therapeutic effect of NCT. Herein, for the first time, a heterojunction (HJ)-fabricated sonoresponsive and NIR-II-photoresponsive nanozyme is reported by assembling carbon dots (CDs) onto TiCN nanosheets. The narrow bandgap and mixed valences of Ti3+ and Ti4+ endow TiCN with the capability to generate reactive oxygen species (ROS) when exposed to ultrasound (US), as well as the dual enzyme-like activities of peroxidase and glutathione peroxidase. Moreover, the catalytic activities and sonodynamic properties of the TiCN nanosheets are boosted by the formation of HJs owing to the increased speed of carrier transfer and the enhanced electron-hole separation. More importantly, the introduction of CDs with excellent NIR-II photothermal properties could achieve mild hyperthermia (43 °C) and thereby further improve the NCT and sonodynamic therapy (SDT) performances of CD/TiCN. The synergetic therapeutic efficacy of CD/TiCN through mild hyperthermia-amplified NCT and SDT could realize "three-in-one" multimodal oncotherapy to completely eliminate tumors without recurrence. This study opens a new avenue for exploring sonoresponsive and NIR-II-photoresponsive nanozymes for efficient tumor therapy based on semiconductor HJs.
Collapse
Affiliation(s)
- Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tiantian Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiaofang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Depanrtment of Urology, the Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, 201805, China
| | - Chuanqi Feng
- College of Chemistry and Chemical Engineering, Dezhou University, University West Road 566, Dezhou, Shandong, 253023, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Yin P, Liang W, Han B, Yang Y, Sun D, Qu X, Hai Y, Luo D. Hydrogel and Nanomedicine-Based Multimodal Therapeutic Strategies for Spinal Cord Injury. SMALL METHODS 2024; 8:e2301173. [PMID: 37884459 DOI: 10.1002/smtd.202301173] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Spinal cord injury (SCI) is a severe neurodegenerative disease caused by mechanical and biological factors, manifesting as a loss of motor and sensory functions. Inhibition of injury expansion and even reversal of injury in the acute damage stage of SCI are important strategies for treating this disease. Hydrogels and nanoparticle (NP)-based drugs are the most effective, widely studied, and clinically valuable therapeutic strategies in the field of repair and regeneration. Hydrogels are 3D flow structures that fill the pathological gaps in SCI and provide a microenvironment similar to that of the spinal cord extracellular matrix for nerve cell regeneration. NP-based drugs can easily penetrate the blood-spinal cord barrier, target SCI lesions, and are noninvasive. Hydrogels and NPs as drug carriers can be loaded with various drugs and biological therapeutic factors for slow release in SCI lesions. They help drugs function more efficiently by exerting anti-inflammatory, antioxidant, and nerve regeneration effects to promote the recovery of neurological function. In this review, the use of hydrogels and NPs as drug carriers and the role of both in the repair of SCI are discussed to provide a multimodal strategic reference for nerve repair and regeneration after SCI.
Collapse
Affiliation(s)
- Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Yihan Yang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Xianjun Qu
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
18
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Hui T, Fu J, Zheng B, Fu C, Zhao B, Zhang T, Zhang Y, Wang C, Yu L, Yang Y, Yue B, Qiu M. Subtractive Nanopore Engineered MXene Photonic Nanomedicine with Enhanced Capability of Photothermia and Drug Delivery for Synergistic Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50002-50014. [PMID: 37851535 DOI: 10.1021/acsami.3c10572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.
Collapse
Affiliation(s)
- Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Jianye Fu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, P. R. China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, P. R. China
| | - Chenchen Fu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Baocai Zhao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Tianqi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Yifan Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Chen Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China) Ministry of Education, Qingdao 266100, P. R. China
| |
Collapse
|